Background: Staple line reinforcement material has been demonstrated to raise the burst pressure threshold after linear intestinal stapling. Numerous bioprosthetic materials have been utilized in surgical practice. Po...Background: Staple line reinforcement material has been demonstrated to raise the burst pressure threshold after linear intestinal stapling. Numerous bioprosthetic materials have been utilized in surgical practice. Porcine urinary bladder matrix (ACell, Inc.) is an extracellular matrix material derived from porcine bladder used to reinforce surgically repaired soft tissue, and facilitate the body’s regenerative capacity. Objective: This study represents the first evaluation of urinary bladder matrix in gastrointestinal staple line reinforcement. Methods: Pathogen-free pigs underwent midline laparotomy under general anesthesia. Small intestinal division was performed with an endoscopic linear stapler. Nineteen intestinal divisions were performed with urinary bladder matrix staple line reinforcement, and twenty divisions were unreinforced. Staple lines were then subjected to burst pressure analysis by intraluminal infusion of dyed Krebs solution at an infusion rate of 20 ml·min-1 under manometric monitoring. Upon visible staple line extravasation, intraluminal pressure was recorded. Results: Intestinal staple lines reinforced with urinary bladder matrix exhibited significantly higher burst pressure threshold (p < 0.05). Reinforced staple lines had an average burst pressure of 99 ± 33 mmHg, compared to 61 ± 37 mmHg for unreinforced staple lines. Conclusion: Staple line reinforcement using urinary bladder matrix acutely improves burst pressures of intestinal staple lines when compared with unreinforced staple lines. Its regenerative properties may confer a long-term advantage to staple line reinforcement. These findings, along with previous findings of constructive remodeling in the presence of urinary bladder matrix in treatment of the gastrointestinal system, suggest that UBM may serve a role in gastrointestinal staple line reinforcement.展开更多
Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress....Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.展开更多
文摘Background: Staple line reinforcement material has been demonstrated to raise the burst pressure threshold after linear intestinal stapling. Numerous bioprosthetic materials have been utilized in surgical practice. Porcine urinary bladder matrix (ACell, Inc.) is an extracellular matrix material derived from porcine bladder used to reinforce surgically repaired soft tissue, and facilitate the body’s regenerative capacity. Objective: This study represents the first evaluation of urinary bladder matrix in gastrointestinal staple line reinforcement. Methods: Pathogen-free pigs underwent midline laparotomy under general anesthesia. Small intestinal division was performed with an endoscopic linear stapler. Nineteen intestinal divisions were performed with urinary bladder matrix staple line reinforcement, and twenty divisions were unreinforced. Staple lines were then subjected to burst pressure analysis by intraluminal infusion of dyed Krebs solution at an infusion rate of 20 ml·min-1 under manometric monitoring. Upon visible staple line extravasation, intraluminal pressure was recorded. Results: Intestinal staple lines reinforced with urinary bladder matrix exhibited significantly higher burst pressure threshold (p < 0.05). Reinforced staple lines had an average burst pressure of 99 ± 33 mmHg, compared to 61 ± 37 mmHg for unreinforced staple lines. Conclusion: Staple line reinforcement using urinary bladder matrix acutely improves burst pressures of intestinal staple lines when compared with unreinforced staple lines. Its regenerative properties may confer a long-term advantage to staple line reinforcement. These findings, along with previous findings of constructive remodeling in the presence of urinary bladder matrix in treatment of the gastrointestinal system, suggest that UBM may serve a role in gastrointestinal staple line reinforcement.
文摘Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.