期刊文献+
共找到2,621篇文章
< 1 2 132 >
每页显示 20 50 100
miRNA-21-5p is an important contributor to the promotion of injured peripheral nerve regeneration using hypoxia-pretreated bone marrow-derived neural crest cells 被引量:1
1
作者 Meng Cong Jing-Jing Hu +9 位作者 Yan Yu Xiao-Li Li Xiao-Ting Sun Li-Ting Wang Xia Wu Ling-Jie Zhu Xiao-Jia Yang Qian-Ru He Fei Ding Hai-Yan Shi 《Neural Regeneration Research》 SCIE CAS 2025年第1期277-290,共14页
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep... Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine. 展开更多
关键词 AXOTOMY cell-free therapy conditioned medium extracellular vesicles hypoxic preconditioning microRNA oxygen-glucose deprivation peripheral nerve injury Schwann cell precursors
下载PDF
The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence
2
作者 Susana Mellado María JoséMorillo-Bargues +4 位作者 Carla Perpiñá-Clérigues Francisco García-García Victoria Moreno-Manzano Consuelo Guerri María Pascual 《Neural Regeneration Research》 SCIE CAS 2025年第4期1153-1163,共11页
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ... Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence. 展开更多
关键词 ADOLESCENCE binge-like ethanol treatment extracellular vesicles hippocampus mesenchymal stem cells neuroinflammation NOD- LRR-and pyrin domain-containing protein 3(NLRP3)
下载PDF
The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury
3
作者 Jennifer M.Colón-Mercado Aranza I.Torrado-Tapias +5 位作者 Iris K.Salgado Jose M.Santiago Samuel E.Ocasio Rivera Dina P.Bracho-Rincon Luis H.Pagan Rivera Jorge D.Miranda 《Neural Regeneration Research》 SCIE CAS 2025年第11期3317-3329,共13页
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice... In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment. 展开更多
关键词 ALLODYNIA central neuropathic pain EAAT-1/GLAST EAAT-2/GLT-1 glutamate transporters selective estrogen receptor modulator sexual dimorphism spinal cord injury TRAUMA
下载PDF
Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease
4
作者 Yimiao Jiang Zengxin Qi +9 位作者 Huixian Zhu Kangli Shen Ruiqi Liu Chenxin Fang Weiwei Lou Yifan Jiang Wangrui Yuan Xin Cao Liang Chen Qianxing Zhuang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1628-1643,共16页
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency i... The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore,bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico–striato–pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease,particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremordominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia–thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity,and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation. 展开更多
关键词 ANXIETY basal ganglia BRADYKINESIA deep brain stimulation DEPRESSION globus pallidus externus globus pallidus internus lateral globus pallidus medial globus pallidus neural circuit Parkinson's disease
下载PDF
Context-dependency in medicine:how neuronal excitability influences the impact of dopamine on cognition
5
作者 Mahboubeh Ahmadi Nahid Rouhi +1 位作者 Javad Mirnajafi-Zadeh Bechara J.Saab 《Neural Regeneration Research》 SCIE CAS 2025年第11期3225-3226,共2页
Dopamine,often termed the"feel-good"neurotransmitter,plays a crucial role in myriad physiological and psychological brain processes.While dopamine is primarily associated with pleasure,reward,and motivation,... Dopamine,often termed the"feel-good"neurotransmitter,plays a crucial role in myriad physiological and psychological brain processes.While dopamine is primarily associated with pleasure,reward,and motivation,its effects can be quite complex;and this complexity is further compounded when examining how dopamine functions in typical versus disease-affected neural circuits.In pa rticula r,epilepsy,characte rized by heightened brain excitability,is linked to cognitive dysfunction,and dopamine is implicated in elements of both its pathology and treatment.Neuroscience has been successful in describing the synaptic abnormalities believed to contribute to memory issues in epilepsy,aiding in the search for effective therapies for what persists as a major medical issue. 展开更多
关键词 DOPAMINE EPILEPSY primarily
下载PDF
Roles of N-cadherin in cerebral cortical development:cooperation with membrane trafficking and actin cytoskeletal regulation
6
作者 Shiho Ito Takeshi Kawauchi 《Neural Regeneration Research》 SCIE CAS 2025年第1期188-190,共3页
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc... Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins. 展开更多
关键词 CEREBRAL SKELETAL COOPERATION
下载PDF
New insights on the role of chondroitin sulfate proteoglycans in neural stem cell–mediated repair in spinal cord injury
7
作者 Seyed Mojtaba Hosseini Soheila Karimi-Abdolrezaee 《Neural Regeneration Research》 SCIE CAS 2025年第6期1699-1700,共2页
Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord under... Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord undergoes a cascade of secondary injury mechanisms that are driven by disruption of the blood-spinal cord ba rrier,vascula r inju ry,glial reactivity,neu roinfla mmation,oxidative stress,lipid peroxidation,and glutamate excitotoxicity that culminate in neuronal and oligodendroglial cell death,demyelination,and axonal damage(Alizadeh et al.,2019).To achieve a meaningful functional recovery after SCI,regeneration of new neurons and oligodendrocytes and their successful growth and integration within the neural network are critical steps for reconstructing the damaged spinal cord tissue (Fischer et al.,2020). 展开更多
关键词 PEROXIDATION FISCHER INJURY
下载PDF
Enhanced autophagic clearance of amyloid-βvia histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo
8
作者 Zhimin Long Chuanhua Ge +5 位作者 Yueyang Zhao Yuanjie Liu Qinghua Zeng Qing Tang Zhifang Dong Guiqiong He 《Neural Regeneration Research》 SCIE CAS 2025年第9期2633-2644,共12页
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct... Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification. 展开更多
关键词 Alzheimer's disease amyloid-β APP/PS1 mice autophagy cognitive impairment histone deacetylase 6 lysosomal acidification microtubule acetylation valproic acid V-ATPASE
下载PDF
Importance of etiologies of secondary diabetes:How often do we think off in clinical practice?
9
作者 Kotha Sugunakar Reddy Arvind Kumar Morya +1 位作者 Archana Gaur Sakthivadivel Varatharajan 《World Journal of Clinical Cases》 SCIE 2025年第5期49-51,共3页
The article"Secondary diabetes due to different etiologies:Four case reports"by Song et al,published in the World Journal of Clinical Cases,delves into the identi-fication of rare causes of secondary diabete... The article"Secondary diabetes due to different etiologies:Four case reports"by Song et al,published in the World Journal of Clinical Cases,delves into the identi-fication of rare causes of secondary diabetes and emphasizes the necessity for healthcare professionals to recognize these conditions.Failure to do so can result in treatment delays and compromised patient outcomes.The article discusses spe-cific types of diabetes,including maturity onset of diabetes in young,pancreas-related diseases,endocrinopathies,drug-induced diabetes,infections,and con-genital genetic syndromes associated with diabetes mellitus.Case summaries highlight how patients with secondary diabetes,stemming from conditions such as Williams-Beuren syndrome and pituitary adenoma,often exhibit distinct characteristics overlooked in clinical practice.The authors stress the importance of a holistic diagnostic approach and advocate for proactive management through early intervention,including genetic tests and antibody detection.Increased awa-reness and education are crucial for timely identification and proper management,ultimately improving patient well-being.These findings prompt a call to action for healthcare professionals to consider rare causes of secondary diabetes,facili-tating better glycemic control and overall patient care. 展开更多
关键词 Diabetes mellitus ETIOLOGIES Viral infections SYNDROMES Pathophysiology Secondary diabetes mellitus Clinical practice
下载PDF
Decline and fall of aging astrocytes:the human perspective
10
作者 Alexei Verkhratsky Alexey Semyanov 《Neural Regeneration Research》 SCIE CAS 2025年第6期1713-1714,共2页
“Last scene of all that ends this strange,eventful history,is second childishness and mere oblivion.I am sans teeth,sans eyes,sans taste,sans everything.”William Shakespeare‘As You Like It'Act 2,Sc.7,l.139Aging... “Last scene of all that ends this strange,eventful history,is second childishness and mere oblivion.I am sans teeth,sans eyes,sans taste,sans everything.”William Shakespeare‘As You Like It'Act 2,Sc.7,l.139Aging of the human brain is characterized by a progressive decline of its functional capacity;this decline however varies widely,and cognitive longevity differs substantially between individuals. 展开更多
关键词 AGING teeth PROGRESSIVE
下载PDF
Mpox and related poxviruses:A literature review of evolution,pathophysiology,and clinical manifestations
11
作者 Priya Bhardwaj Swarnabha Sarkar Ritu Mishra 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第8期319-330,共12页
The recently re-emerged mpox(monkeypox)virus that causes mpox disease is a member of genus Orthopoxvirus and has unprecedentedly spread worldwide.Numerous studies have contributed to our understanding of its evolution... The recently re-emerged mpox(monkeypox)virus that causes mpox disease is a member of genus Orthopoxvirus and has unprecedentedly spread worldwide.Numerous studies have contributed to our understanding of its evolution,pathophysiology,and clinical manifestations.The current outbreak of the mpox virus depicts its novel route of transmission as a new variant.However,the exact reason for its transition from an epidemic to a pandemic remains unclear.Furthermore,other poxviruses such as vaccinia virus,variola virus,and cowpox virus,also belong to the same genus,Orthopoxvirus.In the present review,our objective was to summarize the evidence on evolution,pathophysiology,and clinical manifestations of mpox virus and its related poxviruses.The present review would aid in a better understanding of the current circulating mpox virus and its differences from other poxviruses.In addition,the shared genetic factors contributing to virulence in these Orthopoxvirus highlight their evolutionary connections and genetic similarities.While they exhibit differences in virulence,studying these genetic relationships is crucial for understanding their biology,pathogenicity,and the development of effective vaccines and antiviral therapeutics to curb mpox disease. 展开更多
关键词 EVOLUTION Mpox ORTHOPOXVIRUSES PATHOPHYSIOLOGY POXVIRUSES TRANSMISSION
下载PDF
Does MgSO_(4) protect the preterm brain?Dissecting its role in the pathophysiology of hypoxic ischemic encephalopathy
12
作者 Robert Galinsky Laura Bennet Alistair J.Gunn 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1861-1862,共2页
Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts ... Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts on the individuals,their families,and public health sectors and welfare systems that last a lifetime.The cost of disability associated with preterm brain injury continues to rise.Prevention of this injury,and disability,would significantly reduce this socioeconomic burden. 展开更多
关键词 ENCEPHALOPATHY mortality HYPOXIC
下载PDF
Research and Exploration of Ideological and Political Education in the Course of Pathophysiology
13
作者 Tongtong Lv Qiong Wang +1 位作者 Yanhua Zhang Xiaochun Peng 《Open Journal of Applied Sciences》 2024年第5期1364-1379,共16页
Course based ideological and political education (CIPE) is an important way to improve the quality of ideological and political work and talent cultivation. This study explores for the first time the implementation of... Course based ideological and political education (CIPE) is an important way to improve the quality of ideological and political work and talent cultivation. This study explores for the first time the implementation of ideological and political education in the teaching of pathophysiology courses, and also analyzes the evaluation of student psychological status and the importance of mental health education in the implementation of IPE courses. A survey was conducted on 211 students at Yangtze University to understand their motivation and behavior towards learning ideological, political, and pathophysiological courses. In addition, a questionnaire survey was used to explore the relationship between pathophysiology and ideological and political courses, as well as the importance of their satisfaction with the implementation of ideological and political courses in pathophysiology and mental health education. The research results indicate that factors such as educational background and gender differences affect the learning of CIPE. Graduate students are more interested in ideological and political courses, while female students find it difficult to study pathophysiology;In addition, the results of one-way ANOVA indicate that the implementation effect of IPE in pathophysiology courses depends on the level of interest in IPE and pathophysiology courses, the level of consideration for the importance of professional courses, the professional gains after studying pathophysiology, and the level of understanding of the relationship between IPE and CIPE. 81.04% of students believe that in the CIPE process, telling stories by teachers themselves is the most popular way of communication and education. This reflects the importance of mental health education from the perspective of CIPE. In addition, this study also indicates that PBL and flipped classroom teaching models are popular teaching models in CIPE. This study is beneficial for promoting the improvement and implementation of CIPE and mental health education in higher education curricula, thus providing valuable insights for educational decision-makers. 展开更多
关键词 PATHOPHYSIOLOGY Curriculum Ideological and Political Education Higher Education PSYCHOLOGY Questionnaire Survey
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents 被引量:2
14
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Mechanism of Cu entry into the brain:many unanswered questions 被引量:2
15
作者 Shubhrajit Roy Svetlana Lutsenko 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2421-2429,共9页
Brain tissue requires high amounts of copper(Cu)for its key physiological processes,such as energy production,neurotransmitter synthesis,maturation of neuropeptides,myelination,synaptic plasticity,and radical scavengi... Brain tissue requires high amounts of copper(Cu)for its key physiological processes,such as energy production,neurotransmitter synthesis,maturation of neuropeptides,myelination,synaptic plasticity,and radical scavenging.The requirements for Cu in the brain vary depending on specific brain regions,cell types,organism age,and nutritional status.Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease,Wilson disease,Alzheimer’s disease,Parkinson’s disease,and others.Despite the well-established role of Cu homeostasis in brain development and function,the mechanisms that govern Cu delivery to the brain are not well defined.This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research. 展开更多
关键词 ATOX1 ATP7A ATP7B blood-brain barrier BRAIN choroid plexus COPPER SLC31A1
下载PDF
Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder 被引量:4
16
作者 Luyi Wang Man Xu +8 位作者 Yan Wang Feifei Wang Jing Deng Xiaoya Wang Yu Zhao Ailing Liao Feng Yang Shali Wang Yingbo Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1618-1624,共7页
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate... Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders. 展开更多
关键词 AUTISM Ctnnd2 deletion GABAergic neurons MELATONIN PI3K/Akt signal pathway prefrontal cortex social behavior spine density synaptic-associated proteins
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:2
17
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Dysfunction of synaptic endocytic trafficking in Parkinson's disease 被引量:1
18
作者 Xin Yi Ng Mian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2649-2660,共12页
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t... Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease. 展开更多
关键词 AUTOPHAGY auxilin/PARK19 clathrin-mediated endocytosis dopamine neurons NEURODEGENERATION nigrostriatal pathway Parkinson's disease synaptic vesicle recycling synaptojanin1/PARK20
下载PDF
Neural stem cell-derived exosomes regulate cell proliferation,migration,and cell death of brain microvascular endothelial cells via the miR-9/Hes1 axis under hypoxia 被引量:2
19
作者 Xiaojun Deng Xiaoyi Hu +8 位作者 Shang Wang Hui Zhao Yaqin Wei Jiaqi Fu Wenhui Wu Jinming Liu Caicai Zhang Lili Wang Ping Yuan 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期24-35,共12页
Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial... Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury. 展开更多
关键词 brain microvascular endothelial cells EXOSOMES HES1 MIR-9 neural stem cells
下载PDF
New pharmacological tools:the use of diterpenes to promote adult hippocampal neurogenesis 被引量:1
20
作者 Ricardo Gomez-Oliva Pedro Nunez-Abades Carmen Castro 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1629-1630,共2页
Tissue regeneration maintains homeostasis and preserves the functional features of each tissue.However,not all tissues show a strong repairing capacity.This is the case of the central nervous system.It is now well est... Tissue regeneration maintains homeostasis and preserves the functional features of each tissue.However,not all tissues show a strong repairing capacity.This is the case of the central nervous system.It is now well established that the generation of new functional neurons from stem cells in the adult brain occurs in specific regions of the brain of different species such as rodents,birds,primates,and humans(Eriksson et al.,1998). 展开更多
关键词 capacity MAINTAIN preserve
下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部