Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The...Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The role and importance of processing were also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were published. In order to understand. the tensile behavior of PP/Montmorillonite (MMT) nanocomposites better, and to further improve the reinforcement efficiency, we first prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The dispersion and tensile property of the composites were then investigated by SEM, XRD, TEM and a video-controlled tensile set-up. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. The tensile properties were obtained by video-controlled tensile set-up, which gives true stress-strain curve. It was found that a partly intercalated and partly exfoliated structure (also called incomplete exfoliation) existed in the system. Though the tensile strength of PP nanocomposites is not much improved in engineering stress-strain curves, more than 20% increase of true stress was found in a true stress-strain experiment at high true strain, which indicates that only oriented silicate layers can have a big effect on tensile properties: Not only orientation of silicate platelets but also the degree of exfoliation is a key factor to determine the reinforcement efficiency. The reinforcement efficiency of MMT has been discussed based on the 'continuum' Halpin-Tsai equations. A good agreement was found between experimental data and theoretical prediction by changing N value (number of platelets per stack) which corresponding to different state of the dispersion of MMT in PP matrix.展开更多
The effect of compatibility on phase morphology and orientation of isotactic polypropylene (iPP) blends under shear stress was investigated via dynamic packing injection molding (DPIM). The compatibility of iPP bl...The effect of compatibility on phase morphology and orientation of isotactic polypropylene (iPP) blends under shear stress was investigated via dynamic packing injection molding (DPIM). The compatibility of iPP blended with other polymers, namely, atactic polypropylene (aPP), octane-ethylene copolymer (POE), ethylene-propylene-diene rubber (EPDM) and poly(ethylene-co-vinyl acetate) (EVA), have first been studied using dynamic mechanical analysis (DMA). These blends were subjected to DPIM, which relies on the application of shear stress fields to the melt/solid interfaces during the packing stage by means of hydraulically actuated pistons. The phase morphology, orientation and mechanical properties of the injection-molded samples were characterized by SEM, 2D WAXS and Instron. For incompatible iPP/EVA blends, a much elongated and deformed EVA particles and a higher degree of iPP chain orientation were observed under the effect of shear. However, for compatible iPP/aPP blends, a less deformed and elongated aPP particles and less oriented iPP chains were deduced. It can be concluded that the compatibility between the components decreases the deformation and orientation in the polymer blends. This is most likely due to the hindering effect, resulting from the molecular entanglement and interaction in the compatible system.展开更多
Polyamide 11 (PA 11) is a widely used polyamide resin, but its application is limited since the impact properties, tensile strength, and thermal properties are not very satisfactory for industrial application. In orde...Polyamide 11 (PA 11) is a widely used polyamide resin, but its application is limited since the impact properties, tensile strength, and thermal properties are not very satisfactory for industrial application. In order to improve the mechanical properties of PA 11, in this paper, the preparation of polyamide 11/clay nanocomposites (PACN) via in-situ intercalated polymerization was reported. SEM, TEM and XRD were employed to investigate the dispersion of clay sheet in the matrix. The results indicate that clay layers were homogeneously dispersed in PA11 matrix on a nano-scale, and an exfoliated and intercalated structure co-existed in the composites. The mechanical and thermal properties of the obtained nanocomposites were improved to certain extent by the addition of clay.展开更多
A novel soluble poly(aryl ether ketone) was prepared by the reaction of 4-(3-phenyl-4-hydroxyphenyl)phthalazinone with 4,4'-difluorobenzophenone. The polymer was characterized by DSC, TGA and X-ray diffraction.
The phase morphology and thermal behavior of various isotactic polypropylene (PP)/linear low density polyethylene (LLDPE) blends were investigated with aid of scanning electron microscopy (SEM) and differential ...The phase morphology and thermal behavior of various isotactic polypropylene (PP)/linear low density polyethylene (LLDPE) blends were investigated with aid of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The effect of barrel (melt) temperature on the morphology, thermal behavior and the resultant mechanical properties of the injection molded bars was the research focus, and the influence of LLDPE composition was also taken into account. It was found that the mechanical properties, especially the tensile ductility and the impact strength, were greatly affected by the processing temperature. The samples obtained at low temperatures had the highest elongation at break and impact strength, while those molded at high temperatures had the poorest toughness. Two reasons were responsible for that: first, the phase size in the samples increased with the processing temperature; second, possible orientation existed in the samples obtained at low processing temperatures.展开更多
A novel alkoxysilyl-functionalized poly(phthalazinone ether ketone) (PPEK) was prepared for the boundary lubricant application in micro-electro-mechanical system (MEMS). The synthesis of functionalized PPEK was starte...A novel alkoxysilyl-functionalized poly(phthalazinone ether ketone) (PPEK) was prepared for the boundary lubricant application in micro-electro-mechanical system (MEMS). The synthesis of functionalized PPEK was started from the hydroxylation of PPEK, then following with the corresponding ring-opening reaction of 3-glycidoxypropyltrimethoxysilane (GPTMS). The structures of the functional PPEK were confirmed by FTIR, 1H NMR, 29Si NMR, and UV–vis spectrum.展开更多
PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effec...PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and particle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.展开更多
The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental ro...The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (I_(sc)≈45J/m) below which HDPE can not be toughenedobservably by CaCO_3 particle at given average size, and above which the critical matrix ligamentthickness (τ_?) is proportional to matrix impact strength.展开更多
In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear lo...In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.展开更多
A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedicarboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one(DHPZ),which is a twisted...A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedicarboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one(DHPZ),which is a twisted non-coplanar heterocyclic bisphenol-like monomer.The newly generated polymer was evaluated based on characterization of its solubility,viscosity measurements,elemental analysis,FTIR spectroscopy,differential scanning calorimetric and thermogravimetric studies.展开更多
The optical properties of novel polymer poly(phthalazinone ether sulfone ketone, PPESK) film waveguide are studied by prism coupler. The optical properties of PPESK-8020, including refractive index, birefringence, t...The optical properties of novel polymer poly(phthalazinone ether sulfone ketone, PPESK) film waveguide are studied by prism coupler. The optical properties of PPESK-8020, including refractive index, birefringence, thermo-optical coefficient and optical loss, are demonstrated. This kind of material has the advantages of low optical loss (less than 0.24 dB/cm at 1310 nm and 0.52 dB/cm at 1550 nm) and high thermal stability (1% weight loss temperature: 488 ℃). Due to these excellent properties, it may have great potential in optical waveguide applications.展开更多
Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinki...Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(I) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(I) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone) (PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4'-bis(2-propynyloxy) biphenyl (AMPPESK-BP) system.展开更多
A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial c...A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial cold stretching process was observed. The stretched sheets have a unique mechanical character that an increased tensile modulus is accompanied by an increased extensibility with increasing the draw ratio. Especially, a sharp increasing of the extensibility is observed for PETG/PC (70/30 wt%) blends at draw ratios between 8.2 and 20.0, where a nine times increase of extensibility is achieved. The mechanism of stretching-induced superior extensibility is investigated via micrograph observation, rheometry and calorimetric analysis. The observed superior extensibility could be tentatively explained by the bridging effect of the PC microfibrils on the crack development during tensile failure.展开更多
A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as t...A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant. Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxi- dation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.展开更多
A phthalazinone monomer with an allyl group, i.e. 4-(3-allyl-4-hydroxyphenyl)phthalazin-1(2H)-one, was synthesized and then copolymerized with 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one and 2,6- diflurobenzonit...A phthalazinone monomer with an allyl group, i.e. 4-(3-allyl-4-hydroxyphenyl)phthalazin-1(2H)-one, was synthesized and then copolymerized with 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one and 2,6- diflurobenzonitrile by means of aromatic nucleophilic polycondensation to provide a series of crosslinkable poly(aryl ether nitrile)s. The virgin copolymers exhibited good solubility in polar organic solvents with relative high molecular weights (Mw: 45,130-58,403, inherent viscosities: 0.58-0.75 dL/ g). After cross-linking, the thermal stability and solvent resistance of the polymer increased.展开更多
Two novel heterocylic diamine monomers: l,2-dihydro-2-(4-aminophenyl)-4-4-(4-aminophenoxy) phenyl]-(2H)-phthalazin-l-one and 1,2-Dihydro-2-( 4-aminophenyl )-4-[4-(4-aminophenoxy-3, 5-dimethylphenyl]-(2H)-phthalazin-1-...Two novel heterocylic diamine monomers: l,2-dihydro-2-(4-aminophenyl)-4-4-(4-aminophenoxy) phenyl]-(2H)-phthalazin-l-one and 1,2-Dihydro-2-( 4-aminophenyl )-4-[4-(4-aminophenoxy-3, 5-dimethylphenyl]-(2H)-phthalazin-1-one were successfully synthesized using readily available heterocyclic bisphenol-like monomers through two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety with inherent viscosities of 1.16–1.67 dL/g were prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in a variety of solvents such as N,N -dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), dimethylsulfoxide ( DMSO ), N-methyl-2-pyrrolidinone (NMP), and pyridine. The polymers had high glass transition temperatures ( Tg) in the 291–329°C range.展开更多
A novel triptycene-based dianhyride as a shape-persistent building block with high internal free volume was conveniently synthesized via solvothermal method.Subsequently,three all-aromatic polyimides,Pla,PIb and PIc,w...A novel triptycene-based dianhyride as a shape-persistent building block with high internal free volume was conveniently synthesized via solvothermal method.Subsequently,three all-aromatic polyimides,Pla,PIb and PIc,were prepared by a one-step polycondensation of triptycene-2,3,6,7-tetracarboxylic dianhydride with 2,2'-bis(trifluoromethyl)benzidine,m-tolidine and 3,3',5,5'-tetramethylbenzidine,respectively.The corresponding polymers exhibit good solubility,excellent thermal stability,significant microporosity with large BET surface areas of up to 623 m^-2 g^-1 as well as an unexpected optical property with a transmittance of -85%at 450 nm as -20μm membranes.展开更多
基金We would like to express our heartfelt thanks to the China National Distinguished Young Investigator Fund(29925413)National Natural Science Foundation of China(20274028)for financial support.
文摘Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The role and importance of processing were also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were published. In order to understand. the tensile behavior of PP/Montmorillonite (MMT) nanocomposites better, and to further improve the reinforcement efficiency, we first prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The dispersion and tensile property of the composites were then investigated by SEM, XRD, TEM and a video-controlled tensile set-up. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. The tensile properties were obtained by video-controlled tensile set-up, which gives true stress-strain curve. It was found that a partly intercalated and partly exfoliated structure (also called incomplete exfoliation) existed in the system. Though the tensile strength of PP nanocomposites is not much improved in engineering stress-strain curves, more than 20% increase of true stress was found in a true stress-strain experiment at high true strain, which indicates that only oriented silicate layers can have a big effect on tensile properties: Not only orientation of silicate platelets but also the degree of exfoliation is a key factor to determine the reinforcement efficiency. The reinforcement efficiency of MMT has been discussed based on the 'continuum' Halpin-Tsai equations. A good agreement was found between experimental data and theoretical prediction by changing N value (number of platelets per stack) which corresponding to different state of the dispersion of MMT in PP matrix.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 20404008, 50373030 and 20490220) the Ministry of Education of China (No. 104154).
文摘The effect of compatibility on phase morphology and orientation of isotactic polypropylene (iPP) blends under shear stress was investigated via dynamic packing injection molding (DPIM). The compatibility of iPP blended with other polymers, namely, atactic polypropylene (aPP), octane-ethylene copolymer (POE), ethylene-propylene-diene rubber (EPDM) and poly(ethylene-co-vinyl acetate) (EVA), have first been studied using dynamic mechanical analysis (DMA). These blends were subjected to DPIM, which relies on the application of shear stress fields to the melt/solid interfaces during the packing stage by means of hydraulically actuated pistons. The phase morphology, orientation and mechanical properties of the injection-molded samples were characterized by SEM, 2D WAXS and Instron. For incompatible iPP/EVA blends, a much elongated and deformed EVA particles and a higher degree of iPP chain orientation were observed under the effect of shear. However, for compatible iPP/aPP blends, a less deformed and elongated aPP particles and less oriented iPP chains were deduced. It can be concluded that the compatibility between the components decreases the deformation and orientation in the polymer blends. This is most likely due to the hindering effect, resulting from the molecular entanglement and interaction in the compatible system.
基金We would like to express our heartfelt thanks to the China National Distinguished Young Investigator Fund(No. 29925413) and the National Natural Science Foundation of China (No. 20274028) for Financial Support.
文摘Polyamide 11 (PA 11) is a widely used polyamide resin, but its application is limited since the impact properties, tensile strength, and thermal properties are not very satisfactory for industrial application. In order to improve the mechanical properties of PA 11, in this paper, the preparation of polyamide 11/clay nanocomposites (PACN) via in-situ intercalated polymerization was reported. SEM, TEM and XRD were employed to investigate the dispersion of clay sheet in the matrix. The results indicate that clay layers were homogeneously dispersed in PA11 matrix on a nano-scale, and an exfoliated and intercalated structure co-existed in the composites. The mechanical and thermal properties of the obtained nanocomposites were improved to certain extent by the addition of clay.
基金This work was supported by the National Natural Science Foundation.
文摘A novel soluble poly(aryl ether ketone) was prepared by the reaction of 4-(3-phenyl-4-hydroxyphenyl)phthalazinone with 4,4'-difluorobenzophenone. The polymer was characterized by DSC, TGA and X-ray diffraction.
基金supported by the National Natural Science Foundation of China(Nos.50533050,20874064 and 50873063)
文摘The phase morphology and thermal behavior of various isotactic polypropylene (PP)/linear low density polyethylene (LLDPE) blends were investigated with aid of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The effect of barrel (melt) temperature on the morphology, thermal behavior and the resultant mechanical properties of the injection molded bars was the research focus, and the influence of LLDPE composition was also taken into account. It was found that the mechanical properties, especially the tensile ductility and the impact strength, were greatly affected by the processing temperature. The samples obtained at low temperatures had the highest elongation at break and impact strength, while those molded at high temperatures had the poorest toughness. Two reasons were responsible for that: first, the phase size in the samples increased with the processing temperature; second, possible orientation existed in the samples obtained at low processing temperatures.
文摘A novel alkoxysilyl-functionalized poly(phthalazinone ether ketone) (PPEK) was prepared for the boundary lubricant application in micro-electro-mechanical system (MEMS). The synthesis of functionalized PPEK was started from the hydroxylation of PPEK, then following with the corresponding ring-opening reaction of 3-glycidoxypropyltrimethoxysilane (GPTMS). The structures of the functional PPEK were confirmed by FTIR, 1H NMR, 29Si NMR, and UV–vis spectrum.
基金This work was supported by the China National Distinguished Young Investigator Fund (No. 29925413) and the NationalNatural Science Foundation of China (No. 20274028).
文摘PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and particle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.
基金This project is supported by the National Natural Science Foundation of China.
文摘The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (I_(sc)≈45J/m) below which HDPE can not be toughenedobservably by CaCO_3 particle at given average size, and above which the critical matrix ligamentthickness (τ_?) is proportional to matrix impact strength.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 20404008, 50533050 and 20490220)This work was subsidized by the Special Funds for Major State Basic Research Projects of China (No. 2003CB615600).
文摘In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.
基金supported by Education Office of Liaoning Province(No.2008567)
文摘A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedicarboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one(DHPZ),which is a twisted non-coplanar heterocyclic bisphenol-like monomer.The newly generated polymer was evaluated based on characterization of its solubility,viscosity measurements,elemental analysis,FTIR spectroscopy,differential scanning calorimetric and thermogravimetric studies.
基金This work was supported by the Chinese National Natural Science Foundation under Grant,No.60577014
文摘The optical properties of novel polymer poly(phthalazinone ether sulfone ketone, PPESK) film waveguide are studied by prism coupler. The optical properties of PPESK-8020, including refractive index, birefringence, thermo-optical coefficient and optical loss, are demonstrated. This kind of material has the advantages of low optical loss (less than 0.24 dB/cm at 1310 nm and 0.52 dB/cm at 1550 nm) and high thermal stability (1% weight loss temperature: 488 ℃). Due to these excellent properties, it may have great potential in optical waveguide applications.
基金financially supported by the National Natural Science Foundation of China(No.51273029)
文摘Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(I) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(I) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone) (PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4'-bis(2-propynyloxy) biphenyl (AMPPESK-BP) system.
基金supported by the National Natural Science Foundation of China(Nos.50533050,20874064 and 50873063)
文摘A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial cold stretching process was observed. The stretched sheets have a unique mechanical character that an increased tensile modulus is accompanied by an increased extensibility with increasing the draw ratio. Especially, a sharp increasing of the extensibility is observed for PETG/PC (70/30 wt%) blends at draw ratios between 8.2 and 20.0, where a nine times increase of extensibility is achieved. The mechanism of stretching-induced superior extensibility is investigated via micrograph observation, rheometry and calorimetric analysis. The observed superior extensibility could be tentatively explained by the bridging effect of the PC microfibrils on the crack development during tensile failure.
基金Project supported by the National Natural 863 Plan of China (No. 2001AA33440203).
文摘A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant. Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxi- dation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK2012142)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.11KJD150005)
文摘A phthalazinone monomer with an allyl group, i.e. 4-(3-allyl-4-hydroxyphenyl)phthalazin-1(2H)-one, was synthesized and then copolymerized with 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one and 2,6- diflurobenzonitrile by means of aromatic nucleophilic polycondensation to provide a series of crosslinkable poly(aryl ether nitrile)s. The virgin copolymers exhibited good solubility in polar organic solvents with relative high molecular weights (Mw: 45,130-58,403, inherent viscosities: 0.58-0.75 dL/ g). After cross-linking, the thermal stability and solvent resistance of the polymer increased.
基金Project (No. 59473019) supported by the National Natural Science Foundation of China.
文摘Two novel heterocylic diamine monomers: l,2-dihydro-2-(4-aminophenyl)-4-4-(4-aminophenoxy) phenyl]-(2H)-phthalazin-l-one and 1,2-Dihydro-2-( 4-aminophenyl )-4-[4-(4-aminophenoxy-3, 5-dimethylphenyl]-(2H)-phthalazin-1-one were successfully synthesized using readily available heterocyclic bisphenol-like monomers through two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety with inherent viscosities of 1.16–1.67 dL/g were prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in a variety of solvents such as N,N -dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), dimethylsulfoxide ( DMSO ), N-methyl-2-pyrrolidinone (NMP), and pyridine. The polymers had high glass transition temperatures ( Tg) in the 291–329°C range.
基金the National Natural Science Foundation of China(No.51473055)for financial support
文摘A novel triptycene-based dianhyride as a shape-persistent building block with high internal free volume was conveniently synthesized via solvothermal method.Subsequently,three all-aromatic polyimides,Pla,PIb and PIc,were prepared by a one-step polycondensation of triptycene-2,3,6,7-tetracarboxylic dianhydride with 2,2'-bis(trifluoromethyl)benzidine,m-tolidine and 3,3',5,5'-tetramethylbenzidine,respectively.The corresponding polymers exhibit good solubility,excellent thermal stability,significant microporosity with large BET surface areas of up to 623 m^-2 g^-1 as well as an unexpected optical property with a transmittance of -85%at 450 nm as -20μm membranes.