期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel
1
作者 B.J.GIREESHA L.ANITHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1951-1964,共14页
The main aim of the present work is to investigate the flow and heat transport properties of non-Newtonian Casson-Williamson fluid through an upright microchannel along with entropy generation analysis,and explore the... The main aim of the present work is to investigate the flow and heat transport properties of non-Newtonian Casson-Williamson fluid through an upright microchannel along with entropy generation analysis,and explore the effects of convective boundary conditions,Couette-Poiseuille flow,and nonlinear radiation.The movement of liquid is scrutinized with the Hall effect and exponential heat source.The rheological characteristics of the Casson-Williamson fluid model are also considered.By considering the desirable similarity variables,the equations of motion are reduced to nonlinear ordinary differential equations.The Runge-Kutta-Fehlberg fourth-fifth order method along with the shooting method is adopted to solve these dimensionless expressions.The detailed investigation is pictorially displayed to show the influence of effective parameters on the entropy generation and the Bejan number.One of the major tasks of the exploration is to compare the Casson fluid and the Williamson fluid.The results show that the rate of heat transfer in the Casson fluid is more remarkable than that in the Williamson fluid. 展开更多
关键词 entropy generation Bejan number convective boundary condition Hall effect nonlinear radiation exponential heat source
下载PDF
An Efficient Three-Party Authenticated Key Exchange Procedure Using Chebyshev Chaotic Maps with Client Anonymity
2
作者 Akshaykumar Meshram Monia Hadj Alouane-Turki +1 位作者 N.M.Wazalwar Chandrashekhar Meshram 《Computers, Materials & Continua》 SCIE EI 2023年第6期5337-5353,共17页
Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly... Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly hundreds of billions of devices will be linked together.These smart devices will be able to gather data,process it,and even come to decisions on their own.Security is the most essential thing in these situations.In IoT infrastructure,authenticated key exchange systems are crucial for preserving client and data privacy and guaranteeing the security of data-in-transit(e.g.,via client identification and provision of secure communication).It is still challenging to create secure,authenticated key exchange techniques.The majority of the early authenticated key agreement procedure depended on computationally expensive and resource-intensive pairing,hashing,or modular exponentiation processes.The focus of this paper is to propose an efficient three-party authenticated key exchange procedure(AKEP)using Chebyshev chaotic maps with client anonymity that solves all the problems mentioned above.The proposed three-party AKEP is protected from several attacks.The proposed three-party AKEP can be used in practice for mobile communications and pervasive computing applications,according to statistical experiments and low processing costs.To protect client identification when transferring data over an insecure public network,our three-party AKEP may also offer client anonymity.Finally,the presented procedure offers better security features than the procedures currently available in the literature. 展开更多
关键词 Client anonymity Chebyshev chaotic maps authenticated key exchange statistical experiment Galois fields
下载PDF
SBOOSP for Massive Devices in 5G WSNs Using Conformable Chaotic Maps
3
作者 Chandrashekhar Meshram Agbotiname Lucky Imoize +2 位作者 Sajjad Shaukat Jamal Amer Aljaedi Adel R.Alharbi 《Computers, Materials & Continua》 SCIE EI 2022年第6期4591-4608,共18页
The commercialization of the fifth-generation(5G)wireless network has begun.Massive devices are being integrated into 5G-enabled wireless sensor networks(5GWSNs)to deliver a variety of valuable services to network use... The commercialization of the fifth-generation(5G)wireless network has begun.Massive devices are being integrated into 5G-enabled wireless sensor networks(5GWSNs)to deliver a variety of valuable services to network users.However,there are rising fears that 5GWSNs will expose sensitive user data to new security vulnerabilities.For secure end-to-end communication,key agreement and user authentication have been proposed.However,when billions of massive devices are networked to collect and analyze complex user data,more stringent security approaches are required.Data integrity,nonrepudiation,and authentication necessitate special-purpose subtree-based signature mechanisms that are pretty difficult to create in practice.To address this issue,this work provides an efficient,provably secure,lightweight subtreebased online/offline signature procedure(SBOOSP)and its aggregation(Agg-SBOOSP)for massive devices in 5G WSNs using conformable chaotic maps.The SBOOSP enables multi-time offline storage access while reducing processing time.As a result,the signer can utilize the pre-stored offline information in polynomial time.This feature distinguishes our presented SBOOSP from previous online/offline-signing procedures that only allow for one signature.Furthermore,the new procedure supports a secret key during the pre-registration process,but no secret key is necessary during the offline stage.The suggested SBOOSP is secure in the logic of unforgeability on the chosen message attack in the random oracle.Additionally,SBOOSP and Agg-SBOOSP had the lowest computing costs compared to other contending schemes.Overall,the suggested SBOOSP outperforms several preliminary security schemes in terms of performance and computational overhead. 展开更多
关键词 Subtree-based online/offline signature procedure(SBOOSP) 5G WSNs provably secure scheme massive devices conformable chaotic maps
下载PDF
An Efficient Three-Factor Authenticated Key Agreement Technique Using FCM Under HC-IoT Architectures
4
作者 Chandrashekhar Meshram Agbotiname Lucky Imoize +3 位作者 Sajjad Shaukat Jamal Parkash Tambare Adel R.Alharbi Iqtadar Hussain 《Computers, Materials & Continua》 SCIE EI 2022年第7期1373-1389,共17页
The Human-Centered Internet of Things(HC-IoT)is fast becoming a hotbed of security and privacy concerns.Two users can establish a common session key through a trusted server over an open communication channel using a ... The Human-Centered Internet of Things(HC-IoT)is fast becoming a hotbed of security and privacy concerns.Two users can establish a common session key through a trusted server over an open communication channel using a three-party authenticated key agreement.Most of the early authenticated key agreement systems relied on pairing,hashing,or modular exponentiation processes that are computationally intensive and cost-prohibitive.In order to address this problem,this paper offers a new three-party authenticated key agreement technique based on fractional chaotic maps.The new scheme uses fractional chaotic maps and supports the dynamic sensing of HC-IoT devices in the network architecture without a password table.The projected security scheme utilized a hash function,which works well for the resource-limited HC-IoT architectures.Test results show that our new technique is resistant to password guessing attacks since it does not use a password.Furthermore,our approach provides users with comprehensive privacy protection,ensuring that a user forgery attack causes no harm.Finally,our new technique offers better security features than the techniques currently available in the literature. 展开更多
关键词 Three-party authenticated key agreement ANONYMITY fractional chaotic maps Chebyshev polynomial password table human-centered internet of things(HC-IoT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部