期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of movement training on synaptic interface structure in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere in cerebral infarction rats 被引量:1
1
作者 Min Yang Jiyan Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1203-1207,共5页
BACKGROUND: Movement is an effective way to provide sensory, movement and reflectivity afferent stimulation to the central nervous system. Movement plays an important role in functional recombination and compensation... BACKGROUND: Movement is an effective way to provide sensory, movement and reflectivity afferent stimulation to the central nervous system. Movement plays an important role in functional recombination and compensation in the brain. OBJECTIVE: To observe movement training effects on texture parameters of synaptic interfaces in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere and on motor function in cerebral infarction rats. DESIGN, TIME AND SETTING: This neural morphology and pathology randomized controlled animal experiment was performed at the Center Laboratory, Affiliated Hospital of Luzhou Medical College, China from November 2004 to April 2005. MATERIALS: A total of 32 healthy male Wistar rats aged 8 weeks were equally and randomly assigned into model and movement training groups. METHODS: Rat models of right middle cerebral artery occlusion were established using the suture occlusion method in both groups. Rats in the movement training group underwent balance training, screen training, and rotating rod training starting on day 5 after surgery, for 40 minutes every day, 6 days per week, for 4 weeks. MAIN OUTCOME MEASURES: Texture parameters of synaptic interfaces were determined using a transmission electron microscope and image analyzer during week 5 following model induction. The following parameters were measured: synaptic cleft width; postsynaptic density thickness; synaptic interface curvature; and active zone length. Motor function was assessed using balance training, screen training, and rotating rod training. The lower score indicated a better motor function. RESULTS: The postsynaptic density thickness, synaptic interface curvature, and active zone length were significantly increased in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere of rats from the movement training group compared with the model group (P 〈 0.05 or 0.01). Curved synapses and perforated synapses were seen in the sensorimotor cortex and hippocampal CA3 area at the ischemic hemisphere of rats from the movement training group, while fiat synapses were found in the model group. Balance training, screen training, and rotating rod training scores were lower in the movement training group than the model group (P 〈 0.05). CONCLUSION: Movement training enhances synaptic plasticity in the sensorimotor cortex and, hippocampal CA3 area at the ischemic hemisphere of cerebral infarction rats, and promotes the recovery of motor function. 展开更多
关键词 cerebral infarction movement training SYNAPSE RATS
下载PDF
Electrical stimulation upregulates angiopoietin-1/Tie-2 mRNA expression in a rat model of focal cerebral ischemia
2
作者 Shasha Li Yonghong Yang Qiang Gao Jing He Chengqi He 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1470-1474,共5页
Angiopoietin-1/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (Tie-2) is a newly discovered signaling pathway of angiogenesis. Angiogenesis benefits recovery of neurological funct... Angiopoietin-1/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (Tie-2) is a newly discovered signaling pathway of angiogenesis. Angiogenesis benefits recovery of neurological functions such as swallowing. In the present study, a rat model of dysphagia following stroke was induced by middle cerebral artery occlusion to investigate the influence of low frequency electrical stimulus with bidirectional square waves and triangular waves on angiopoietin-1/-13e-2 mRNA expression. Reverse transcription-polymerase chain reaction results showed that low frequency electrical stimulus significantly improved the neurological scores of the model rats, and increased angiopoietin-1/'13e-2 mRNA expression. This demonstrates that low frequency electrical stimulation can ameliorate neurological function in rats with focal brain ischemia, potentially through regulation of angiopoietin-1/-13e-2 expression in the angiogenesis pathway. 展开更多
关键词 low frequency electrical stimulation ANGIOPOIETIN-1 tyrosine kinase with immunoglobulin and epidermal growth factor homology domains middle cerebral artery occlusion model DYSPHAGIA
下载PDF
High frequency electrical field-ultrashort wave therapy for treatment of cerebral ischemia/reperfusion injury in rats Histopathological evaluation
3
作者 Lixin Zhang Zhiqiang Zhang +2 位作者 Weidi Liang Lin Li Xiuhua Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第5期271-275,共5页
BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reper... BACKGROUND: Ultrashortwave (USW) therapy may be a new method for treatment of ischemic cerebrovascular diseases. It is necessary to study its treatment time window. OBJECTIVE: To observe the effect of USW on reperfusion injury after occlusion of the middle cerebral artery (MCAO) in rats and discuss its acting mechanisms and best occasion. DESIGN: Randomized controlled observation, animal experiment. SETTING: Laboratory of Department of Rehabilitation Medicine, First Hospital Affiliated to China Medical University. MATERIALS: Sixty-six healthy Wistar rats of either gender and of clean grade, aged 18–20 weeks, weighing from 250 to 300 g, were provided by the Experimental Animal Center of China Medical University. An USW device (Shanghai Electrical Device Company) with the frequency of 40.68 MHz and the maximum output power of 40 W, and the first channel power controlled at about 11 W was used in this study. Output power was determined by photometry. METHODS: Sixty-six rats were randomly divided into 3 groups: Sham-operation group (n =6): The suture was inserted only 1.0 depth during operation, which did not cause MACO; Model group (n =12): The USW treatment procedure was performed with the power off on the model rats; USW treatment group (n =48): The 48 rats were randomly divided into modeling 0, 6, 12 and 18 hours 4 subgroups. USW therapy without heat was used on the head of rats for 10 minutes at each time point. Twelve rats in USW treatment group were decapitated following treatment at each time point, and then their brain tissues were harvested. The rat brain tissues in other groups were harvested by decapitation at 24 hours after modeling. When the rats were awake, the neurologic deficit was scored by Zea-Longa five-point scale (a score of 0 indicated no neurologic deficit, a score of 1 indicated failure to extend left paw fully, a score of 2 indicated circling to the left, and a score of 3 indicated falling to the left, and rats with a score of 4 did not walk spontaneously and has a depressed level of consciousness.) Rats which still survived at 24 hours and was scored 1 and 2 on the neurologic scoring were involved in the analysis. ① Determination of cerebral water content: Cerebral water contents of healthy and injured hemisphere were determined by wet/dry weighing method. Cerebral water content (100%) =(1–dry/wet weight)×100%.②Infarction volume: The brain tissue was sliced into 2 mm sections and each section was stained with 20 g/L 2,3,5-triphenyltetrazolium chloride (TTC) by TTC staining technique for 30 minutes in a water bath at 37 ℃.Then, the section was fixed in 100 g/L formaldehyde for 10 minutes .The infarction volume was analyzed by using an imaging analyzer.③ Preparation of light microscopic sample: The rat brain tissue fixed by 100 g/L neutral formaldehyde and stained with TTC, were gradiently dehydrated with alcoholic, embedded with paraffin, sliced and stained by HE, finally, the sections were observed under the light microscope. MAIN OUTCOME MEASURES: Cerebral water content, cerebral infarction volume and cerebral histomorphology of rats in each group. RESULTS: Sixty-six rats were involved in the final analysis. ①Cerebral water content: There were no significant differences of cerebral water content in healthy hemisphere among groups (P 〉 0.05). Cerebral water content of injured hemisphere in the model group and at modeling 0, 6, 12 and 18 hours in the USW treatment group was (81.50±0.74) %, (81.02±0.83) %, (79.78±0.70) %, (79.74±0.84) %, (79.39± 1.06) %, respectively, which was significantly higher than that in the sham-operation group [(78.09±0.52) %, P 〈 0.05]. At modeling 0, 6 and 12 hours, the cerebral water content in the injured hemisphere in the USW treatment group was significantly lower than that in the model group, respectively (P 〈 0.05). It indicatedthat USW treatment given at 6, 12 and 18 hours after ischemia/reperfusion can lessen brain edema. ② Cerebral infarction volume: At modeling 18 hours, cerebral infarction volume in the injured hemisphere of USW treatment group was smaller than that in the model group [(191.62±121.45),(362.03±142.01)mm3, t =2.23,P 〈 0.05]. ③ Cerebral histomorphological observation: No swelling was found in the brain tissue section of rats in the sham-operation group. In the model group, the size of infarction hemisphere was obviously increased, gyrus became flattened, cortical sulci was shallow, the color at infarct focus obviously became light, and the tissue was fragile and brittle. In the sham-operation group, it was found under the microscope that mesenchyma was highly swelled, neuronal peripheral interspace was obviously broadened, neurons presented triangle, nucleoli were reduced, condensed even disappeared, and neutrophils in the vascular cavity were obviously increased. In the USW treatment group, pathological injury was not obviously lessened at 0 hour, moderate or mild edema could be found in the injured hemisphere of USW treatment group at modeling 6,12 and 18 hours, and at this time, neutrophils in vascular cavity were increased slightly, and pathological injuries were lessened. CONCLUSION: USW may play a protective effect on cerebral ischemia/reperfusion injury by decreasing brain edema and/or cerebral infarction volume. The treatment action of USW may start at 6 hours after reperfusion, and the best occasion of application may be at 18 hours after reperfusion. 展开更多
关键词 ischemic cerebrovascular disease ultrashort wave reperfusion injury brain edema
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部