The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen(Col-I)from TiO2 nanotubes(NT-EPF surface).We hypothesized that the NT-EPF surface would play bifunc...The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen(Col-I)from TiO2 nanotubes(NT-EPF surface).We hypothesized that the NT-EPF surface would play bifunctional roles in stimulating plateletmediated fibroblast recruitment and anchoring fibroblast-derived Col-I to form a perpendicular collagen assembly,mimicking the connective tissue attachment around natural teeth for the long-term maintenance of dental implants.Ti surface modification was accomplished in two steps.First,TiO2 nanotubes(NT)array was fabricated via anodization.Diameters and depths of NTs were controlled by applied voltage and duration.Subsequently,an electrophoretic fusion(EPF)method was applied to fuse Col-I into nanotube arrays in a perpendicular fashion.Surface wettability was assessed by contact angle measurement.The bioactivity of modified TiO2 surfaces was evaluated in terms of NIH3T3 fibroblast attachment,platelet activation,and collagen extension.Early attachment,aggregation,and activation of platelets as well as release of platelet-related growth factors were demonstrated on NTEPF surfaces.Platelet-mediated NIH3T3 cells migration toward NT-EPF was significantly increased and the attached cells showed a typical fibrous morphology with elongated spindle shape.A direct linkage between pseudopod-like processes of fibroblasts to NTEPF surfaces was observed.Furthermore,the engineered EPF collagen protrusion linked with cell-derived collagen in a perpendicular fashion.Within the limitation of this in vitro study,the TiO2 nanotube with perpendicular Col-I surface(NT-EPF)promoted better cell attachment,induced a strong platelet activation which suggested the ability to create a more robust soft tissue seal.展开更多
Tricho-dento-osseous(TDO)syndrome is a rare autosomal dominant disease resulting from distal-less homeobox 3(DLX3)mutation.1,2 Accumulative bone density in alveolar bone is a clinically favorable phenotype for TDO pat...Tricho-dento-osseous(TDO)syndrome is a rare autosomal dominant disease resulting from distal-less homeobox 3(DLX3)mutation.1,2 Accumulative bone density in alveolar bone is a clinically favorable phenotype for TDO patients.However,the limited number of bone marrow mesenchymal stem cells(BMSCs)in TDO patients restricts their application.展开更多
文摘The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen(Col-I)from TiO2 nanotubes(NT-EPF surface).We hypothesized that the NT-EPF surface would play bifunctional roles in stimulating plateletmediated fibroblast recruitment and anchoring fibroblast-derived Col-I to form a perpendicular collagen assembly,mimicking the connective tissue attachment around natural teeth for the long-term maintenance of dental implants.Ti surface modification was accomplished in two steps.First,TiO2 nanotubes(NT)array was fabricated via anodization.Diameters and depths of NTs were controlled by applied voltage and duration.Subsequently,an electrophoretic fusion(EPF)method was applied to fuse Col-I into nanotube arrays in a perpendicular fashion.Surface wettability was assessed by contact angle measurement.The bioactivity of modified TiO2 surfaces was evaluated in terms of NIH3T3 fibroblast attachment,platelet activation,and collagen extension.Early attachment,aggregation,and activation of platelets as well as release of platelet-related growth factors were demonstrated on NTEPF surfaces.Platelet-mediated NIH3T3 cells migration toward NT-EPF was significantly increased and the attached cells showed a typical fibrous morphology with elongated spindle shape.A direct linkage between pseudopod-like processes of fibroblasts to NTEPF surfaces was observed.Furthermore,the engineered EPF collagen protrusion linked with cell-derived collagen in a perpendicular fashion.Within the limitation of this in vitro study,the TiO2 nanotube with perpendicular Col-I surface(NT-EPF)promoted better cell attachment,induced a strong platelet activation which suggested the ability to create a more robust soft tissue seal.
基金supported by the National Nature Science Foundation of China(No.81970920,81900983)the Natural Science Foundation of Beijing Municipality,China(No.7232218)the Shanghai Science and Technology Committee Youth Sailing Program(China)(No.19YF1442500).
文摘Tricho-dento-osseous(TDO)syndrome is a rare autosomal dominant disease resulting from distal-less homeobox 3(DLX3)mutation.1,2 Accumulative bone density in alveolar bone is a clinically favorable phenotype for TDO patients.However,the limited number of bone marrow mesenchymal stem cells(BMSCs)in TDO patients restricts their application.