Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted enviro...Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.展开更多
Interfacial behavior of cysteine (Cys) between mild steel and sulfuric acid solution as a corrosion inhibitor has been studied with electrochemical AC (alternating current) and DC (direct current) techniques at (25.0&...Interfacial behavior of cysteine (Cys) between mild steel and sulfuric acid solution as a corrosion inhibitor has been studied with electrochemical AC (alternating current) and DC (direct current) techniques at (25.0±0.1) ℃. The AC impedance results were evaluated using equivalent circuits in which a constant phase element (CPE) has been replaced with double layer capacitance (Cdl) to represent the frequency distribution of experimental data. Changes in impedance parameters (charge transfer resistance and double layer capacitance) indicated that cysteine molecules acted by accumulating at the metal/solution interface. The fractional coverage of the metal surface (θ) was determined using AC impedance results and it was found that the adsorption of cysteine on the mild steel surface followed a Langmuir isotherm model with a standard free energy of adsorption (△G0 ads) of -35.1 kJ·mol-1. To clarify the type of interaction between mild steel surface and cysteine molecules with a molecular orbital approach, electronic properties, such as, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, and the frontier molecular orbital coefficients have been calculated. Energy gaps for the interaction of mild steel surface and cysteine molecules (ELUMO Fe-EHOMO Cys and ELUMO Cys-EHOMO Fe) were used to determine whether cysteine molecules acted as electron donors or electron acceptors when they interacted with the mild steel surface. The local reactivity was evaluated through the condensed Fukui indices. Theoretical calculations were carried out using the density functional theory (DFT) at B3LYP level with the 6-311++G(d,p) basis set for all atoms by Gaussian 03W program.展开更多
A laser diode (LD) cladding-pumped cw Tm^3+ -doped silica fibre amplifier is reported that provides up to 3 W output with the slope efficiency nearly 30%. The gain fibre is 27.5/400μm D-shaped Tm^3+ -doped silica...A laser diode (LD) cladding-pumped cw Tm^3+ -doped silica fibre amplifier is reported that provides up to 3 W output with the slope efficiency nearly 30%. The gain fibre is 27.5/400μm D-shaped Tm^3+ -doped silica double- cladding fibre, and the input signal sources is an LD-pumped Tm^3+:YAP lasing at 1.99μm. The measured amplified spectrum only stretches a little relative to the input signal spectrum. This is the first report to the authors' knowledge of general experimental investigation of cladding-pumped Tm^3+ -doped fibre amplifier of high power cw at 1.99μm.展开更多
In 2006 anew biology curriculum called “Human Biology: Emphasizing the Role of Homeostasis” was introduced into the Israeli high school system. Complex systems like those that make up the human body have become incr...In 2006 anew biology curriculum called “Human Biology: Emphasizing the Role of Homeostasis” was introduced into the Israeli high school system. Complex systems like those that make up the human body have become increasingly important as a focus of high school education. This study examines the effectiveness of the concept map as a assessment tool for students’ systems thinking, a tool that provides researchers with a detailed picture of the systems thinking development taking place within individual students. The content of the students’ concept maps was translated into information about students’ system thinking using the Systems Thinking Hierarchy (STH) model, a model in which system thinking is categorized according to eight hierarchical characteristics or abilities. The goal was to use the maps to characterize Israeli high school students’ understanding of the body’s systemic nature. To do this, we identified the extent to which the students understand three central elements of systems, namely hierarchy, homeostasis, and dynamism, and then analyzed this understanding according to its place within the hierarchical stages of the STH model. The extensive qualitative data analysis of 48 concept maps made by 11th grade biology majors suggest that the strength of the concept map is in its ability to describe the first two levels of system thinking (analysis and synthesis). However, it proved less successful in eliciting evidence of the third and highest level, particularly of students’ understanding of patterns, of homeostasis and their capacity for temporal thinking.展开更多
基金funded by National Key R&D Program of China(2020YFD1001004).
文摘Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.
基金The project was supported by the Cukurova University Research Fund (EF2007BAP2)
文摘Interfacial behavior of cysteine (Cys) between mild steel and sulfuric acid solution as a corrosion inhibitor has been studied with electrochemical AC (alternating current) and DC (direct current) techniques at (25.0±0.1) ℃. The AC impedance results were evaluated using equivalent circuits in which a constant phase element (CPE) has been replaced with double layer capacitance (Cdl) to represent the frequency distribution of experimental data. Changes in impedance parameters (charge transfer resistance and double layer capacitance) indicated that cysteine molecules acted by accumulating at the metal/solution interface. The fractional coverage of the metal surface (θ) was determined using AC impedance results and it was found that the adsorption of cysteine on the mild steel surface followed a Langmuir isotherm model with a standard free energy of adsorption (△G0 ads) of -35.1 kJ·mol-1. To clarify the type of interaction between mild steel surface and cysteine molecules with a molecular orbital approach, electronic properties, such as, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, and the frontier molecular orbital coefficients have been calculated. Energy gaps for the interaction of mild steel surface and cysteine molecules (ELUMO Fe-EHOMO Cys and ELUMO Cys-EHOMO Fe) were used to determine whether cysteine molecules acted as electron donors or electron acceptors when they interacted with the mild steel surface. The local reactivity was evaluated through the condensed Fukui indices. Theoretical calculations were carried out using the density functional theory (DFT) at B3LYP level with the 6-311++G(d,p) basis set for all atoms by Gaussian 03W program.
文摘A laser diode (LD) cladding-pumped cw Tm^3+ -doped silica fibre amplifier is reported that provides up to 3 W output with the slope efficiency nearly 30%. The gain fibre is 27.5/400μm D-shaped Tm^3+ -doped silica double- cladding fibre, and the input signal sources is an LD-pumped Tm^3+:YAP lasing at 1.99μm. The measured amplified spectrum only stretches a little relative to the input signal spectrum. This is the first report to the authors' knowledge of general experimental investigation of cladding-pumped Tm^3+ -doped fibre amplifier of high power cw at 1.99μm.
文摘In 2006 anew biology curriculum called “Human Biology: Emphasizing the Role of Homeostasis” was introduced into the Israeli high school system. Complex systems like those that make up the human body have become increasingly important as a focus of high school education. This study examines the effectiveness of the concept map as a assessment tool for students’ systems thinking, a tool that provides researchers with a detailed picture of the systems thinking development taking place within individual students. The content of the students’ concept maps was translated into information about students’ system thinking using the Systems Thinking Hierarchy (STH) model, a model in which system thinking is categorized according to eight hierarchical characteristics or abilities. The goal was to use the maps to characterize Israeli high school students’ understanding of the body’s systemic nature. To do this, we identified the extent to which the students understand three central elements of systems, namely hierarchy, homeostasis, and dynamism, and then analyzed this understanding according to its place within the hierarchical stages of the STH model. The extensive qualitative data analysis of 48 concept maps made by 11th grade biology majors suggest that the strength of the concept map is in its ability to describe the first two levels of system thinking (analysis and synthesis). However, it proved less successful in eliciting evidence of the third and highest level, particularly of students’ understanding of patterns, of homeostasis and their capacity for temporal thinking.