Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-g...Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-graded pavements are considered potentially to be effective solutions to avoid these forms of infiltration-related distress.The main property that influences the performance of HMA is the hydraulic permeability.The permeability is a function of several properties of HMA which make the process of mix design very complex and uncertain.In this paper,starting from different grading curves,we evaluate the dependence of the permeability by the size distribution of aggregates using a full numerical model that has yet been validated through experimental tests and theoretical calculations.The correlation between the grain size distributions and the hydraulic permeability is very useful in order to simplify and optimize the design of open-graded pavements.展开更多
After Maillart's concrete curved arch bridges were built before the Second World War, in the second half of the past century and this century, many curved bridges have been built with both steel and concrete. Conv...After Maillart's concrete curved arch bridges were built before the Second World War, in the second half of the past century and this century, many curved bridges have been built with both steel and concrete. Conversely, since the construction of Musmeci's shell supported bridge in Potenza, few shell bridges have been constructed. This paper explains how to design a curved footbridge supported by an anticlastic shell by shaping the shell via a thrust network analysis(TNA). By taking advantage of the peculiar properties of anticlastic membranes, the unconventional method of shaping a shell by a TNA is illustrated. The shell top edge that supports the deck has an assigned layout, which is provided by the road curved layout. The form of the bottom edge is obtained by the form-finding procedure as a thrust line, by applying the thrust network analysis(TNA) in a non-standard manner,shaping the shell by applying the boundary conditions and allowing relaxation. The influence of the boundary conditions on the bridge shape obtained as an envelope of thrust lines is investigated. A finite element analysis was performed. The results indicate that the obtained shell form is effective in transferring deck loads to foundations via compressive stresses and taking advantage of concrete mechanical properties.展开更多
文摘Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-graded pavements are considered potentially to be effective solutions to avoid these forms of infiltration-related distress.The main property that influences the performance of HMA is the hydraulic permeability.The permeability is a function of several properties of HMA which make the process of mix design very complex and uncertain.In this paper,starting from different grading curves,we evaluate the dependence of the permeability by the size distribution of aggregates using a full numerical model that has yet been validated through experimental tests and theoretical calculations.The correlation between the grain size distributions and the hydraulic permeability is very useful in order to simplify and optimize the design of open-graded pavements.
基金supported by the Recruitment Program of Global Experts Foundation (Grant No. TM2012-27)the National Natural Science Foundation of China (Grant No. 51778148 and 51508103)the Fujian Provincial Education Department Research Foundation for Young Teacher (Grant No. JA150743)
文摘After Maillart's concrete curved arch bridges were built before the Second World War, in the second half of the past century and this century, many curved bridges have been built with both steel and concrete. Conversely, since the construction of Musmeci's shell supported bridge in Potenza, few shell bridges have been constructed. This paper explains how to design a curved footbridge supported by an anticlastic shell by shaping the shell via a thrust network analysis(TNA). By taking advantage of the peculiar properties of anticlastic membranes, the unconventional method of shaping a shell by a TNA is illustrated. The shell top edge that supports the deck has an assigned layout, which is provided by the road curved layout. The form of the bottom edge is obtained by the form-finding procedure as a thrust line, by applying the thrust network analysis(TNA) in a non-standard manner,shaping the shell by applying the boundary conditions and allowing relaxation. The influence of the boundary conditions on the bridge shape obtained as an envelope of thrust lines is investigated. A finite element analysis was performed. The results indicate that the obtained shell form is effective in transferring deck loads to foundations via compressive stresses and taking advantage of concrete mechanical properties.