The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
MXene has garnered widespread recognition in the scientific com-munity due to its remarkable properties,including excellent thermal stability,high conductivity,good hydrophilicity and dispersibility,easy processabilit...MXene has garnered widespread recognition in the scientific com-munity due to its remarkable properties,including excellent thermal stability,high conductivity,good hydrophilicity and dispersibility,easy processability,tunable surface properties,and admirable flexibility.MXenes have been categorized into different families based on the number of M and X layers in M_(n+1)X_(n),such as M_(2)X,M_(3)X_(2),M_(4)X_(3),and,recently,M_(5)X_(4).Among these families,M_(2)X and M_(3)X_(2),par-ticularly Ti_(3)C_(2),have been greatly explored while limited studies have been given to M_(5)X_(4)MXene synthesis.Meanwhile,studies on the M_(4)X_(3)MXene family have developed recently,hence,demanding a compilation of evaluated studies.Herein,this review provides a systematic overview of the latest advancements in M_(4)X_(3)MXenes,focusing on their properties and applications in energy storage devices.The objective of this review is to provide guidance to researchers on fostering M_(4)X_(3)MXene-based nanomaterials,not only for energy storage devices but also for broader applications.展开更多
In this work,W/β-Ga_(2)O_(3)Schottky barrier diodes,prepared using a confined magnetic field-based sputtering method,were analyzed at different operation temperatures.Firstly,Schottky barrier height increased with in...In this work,W/β-Ga_(2)O_(3)Schottky barrier diodes,prepared using a confined magnetic field-based sputtering method,were analyzed at different operation temperatures.Firstly,Schottky barrier height increased with increasing temperature from 100 to 300 K and reached 1.03 eV at room temperature.The ideality factor decreased with increasing temperature and it was higher than 2 at 100 K.This apparent high value was related to the tunneling effect.Secondly,the series and on-resistances decreased with increasing operation temperature.Finally,the interfacial dislocation was extracted from the tunneling current.A high dislocation density was found,which indicates the domination of tunneling through dislocation in the transport mecha-nism.These findings are evidently helpful in designing better performance devices.展开更多
We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators(PENGs)consisting of piezoelectric nanofiber(NF)mats and metal-electroplated microfiber(MF)electrodes using electrosp...We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators(PENGs)consisting of piezoelectric nanofiber(NF)mats and metal-electroplated microfiber(MF)electrodes using electrospinning and electroplating methods.Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites.A viscoelastic solution,mixed with P(VDF-TrFE)and BaTiO_(3),was electrospun into piezoelectric NFs with a piezoelectric coefficient d33 of 21.2 pC/N.In addition,the combination of electrospinning and elec-troplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes(TCEs),contributing to the high transparency of the resulting piezocomposite.The energy-harvesting efficiencies of the BaTiO_(3)-embedded NF-based PENGs with transmittances of 86%and 80%were 200 and 240 V/MPa,respectively,marking the highest values in their class.Moreover,the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V.These highly efficient energy-harvesting performances,along with the transparent and flexible features of the PENGs,hold great promise for body-attachable energy-harvesting and sensing devices,as demonstrated in this study.展开更多
Variations in parameters associated with the ambient environment can introduce noise in soft,body-worn sensors.For example,many piezoresistive pressure sensors exhibit a high degree of sensitivity to fluctuations in t...Variations in parameters associated with the ambient environment can introduce noise in soft,body-worn sensors.For example,many piezoresistive pressure sensors exhibit a high degree of sensitivity to fluctuations in temperature,thereby requiring active compensation strategies.The research presented here addresses this challenge with a multilayered 3D microsystem design that integrates four piezoresistive sensors in a full-Wheatstone bridge configuration.An optimized layout of the sensors relative to the neutral mechanical plane leads to both an insensitivity to temperature and an increased sensitivity to pressure,relative to previously reported devices that rely on similar operating principles.Integrating this 3D pressure sensor into a soft,flexible electronics platform yields a system capable of real-time,wireless measurements from the surface of the skin.Placement above the radial and carotid arteries yields high-quality waveforms associated with pulsatile blood flow,with quantitative correlations to blood pressure.The results establish the materials and engineering aspects of a technology with broad potential in remote health monitoring.展开更多
To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attainin...To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems.展开更多
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant ...Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs.Here,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer nanofilm.These nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors.Here,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible spectrum.Furthermore,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.展开更多
In the burgeoning field of wearable electronics,flexible and durable conductors that can maintain consistent electrical properties under various conditions are critically needed.This research introduces a novel compos...In the burgeoning field of wearable electronics,flexible and durable conductors that can maintain consistent electrical properties under various conditions are critically needed.This research introduces a novel composite material comprising eutectic gallium-indium(EGaIn)and a polybutadiene-based urethane(PBU)specifically designed to address this challenge.EGaIn,renowned for its superior conductivity due to its liquid state at room temperature,is strategically combined with PBU,which offers inherent flexibility and remarkable self-healing capabilities derived from reversible Diels–Alder reactions.Additionally,the composite maintains exceptional electrical resistance stability,withstanding mechanical strains up to 135%without compromising performance.The material’s self-healing capability is attributed to the autonomous mending properties of EGaIn and the reversible Diels–Alder reactions in the PBU matrix.The result is an efficient restoration of the composite’s original properties upon incurring damage.Furthermore,the composite’s adaptability is showcased through its printability,allowing for precise patterning conducive to custom-designed wearable devices.展开更多
In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of...In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of epitaxial layers on the InPOI substrate is similar to that on the InP substrate.The photo responsivities of both devices measured at 1.55μm are comparable,which are about 0.808-0.828 A W^(-1).Although the dark current of PD on the InPOI substrate is twice as high as that of PD on the InP substrate at 300 K,the peak detectivities of both PDs are comparable.In general,the overall performance of the InPOI-based PD is comparable to the InP-based PD,demonstrating that the ion-slicing technology is a promising route to enable the highquality Si-based InP platform for the full photonic integration on a Si substrate.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金supported by the Hong Kong Research Grants Council(Project Number CityU 11218420)the Deanship of Scientific Research at King Khalid University Saudi Arabia for funding through research groups program under Grant Number R.G.P.2/593/44.
文摘MXene has garnered widespread recognition in the scientific com-munity due to its remarkable properties,including excellent thermal stability,high conductivity,good hydrophilicity and dispersibility,easy processability,tunable surface properties,and admirable flexibility.MXenes have been categorized into different families based on the number of M and X layers in M_(n+1)X_(n),such as M_(2)X,M_(3)X_(2),M_(4)X_(3),and,recently,M_(5)X_(4).Among these families,M_(2)X and M_(3)X_(2),par-ticularly Ti_(3)C_(2),have been greatly explored while limited studies have been given to M_(5)X_(4)MXene synthesis.Meanwhile,studies on the M_(4)X_(3)MXene family have developed recently,hence,demanding a compilation of evaluated studies.Herein,this review provides a systematic overview of the latest advancements in M_(4)X_(3)MXenes,focusing on their properties and applications in energy storage devices.The objective of this review is to provide guidance to researchers on fostering M_(4)X_(3)MXene-based nanomaterials,not only for energy storage devices but also for broader applications.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1013693)the Technology Innovation Program (20016102, Development of 1.2k V Gallium oxide power semiconductor devices technology and RS2022-00144027, Development of 1.2k V-class low-loss gallium oxide transistor) by the Ministry of Trade, Industry, and Energy (MOTIE, Korea)
文摘In this work,W/β-Ga_(2)O_(3)Schottky barrier diodes,prepared using a confined magnetic field-based sputtering method,were analyzed at different operation temperatures.Firstly,Schottky barrier height increased with increasing temperature from 100 to 300 K and reached 1.03 eV at room temperature.The ideality factor decreased with increasing temperature and it was higher than 2 at 100 K.This apparent high value was related to the tunneling effect.Secondly,the series and on-resistances decreased with increasing operation temperature.Finally,the interfacial dislocation was extracted from the tunneling current.A high dislocation density was found,which indicates the domination of tunneling through dislocation in the transport mecha-nism.These findings are evidently helpful in designing better performance devices.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MIST)(RS-2023-00211303)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea Government(MOTIE)(P0023521,HRD Program for Industrial Innovation).
文摘We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators(PENGs)consisting of piezoelectric nanofiber(NF)mats and metal-electroplated microfiber(MF)electrodes using electrospinning and electroplating methods.Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites.A viscoelastic solution,mixed with P(VDF-TrFE)and BaTiO_(3),was electrospun into piezoelectric NFs with a piezoelectric coefficient d33 of 21.2 pC/N.In addition,the combination of electrospinning and elec-troplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes(TCEs),contributing to the high transparency of the resulting piezocomposite.The energy-harvesting efficiencies of the BaTiO_(3)-embedded NF-based PENGs with transmittances of 86%and 80%were 200 and 240 V/MPa,respectively,marking the highest values in their class.Moreover,the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V.These highly efficient energy-harvesting performances,along with the transparent and flexible features of the PENGs,hold great promise for body-attachable energy-harvesting and sensing devices,as demonstrated in this study.
基金supported by a grant from Kyung Hee University in 2022(KHU-20220916)。
文摘Variations in parameters associated with the ambient environment can introduce noise in soft,body-worn sensors.For example,many piezoresistive pressure sensors exhibit a high degree of sensitivity to fluctuations in temperature,thereby requiring active compensation strategies.The research presented here addresses this challenge with a multilayered 3D microsystem design that integrates four piezoresistive sensors in a full-Wheatstone bridge configuration.An optimized layout of the sensors relative to the neutral mechanical plane leads to both an insensitivity to temperature and an increased sensitivity to pressure,relative to previously reported devices that rely on similar operating principles.Integrating this 3D pressure sensor into a soft,flexible electronics platform yields a system capable of real-time,wireless measurements from the surface of the skin.Placement above the radial and carotid arteries yields high-quality waveforms associated with pulsatile blood flow,with quantitative correlations to blood pressure.The results establish the materials and engineering aspects of a technology with broad potential in remote health monitoring.
基金supported by National Research Foundation of Korea(NRF)[RS-2024-00350701 and RS-2023-00207828].
文摘To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2022M3C1A3081312).
文摘Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices.However,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs.Here,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer nanofilm.These nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors.Here,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible spectrum.Furthermore,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.
基金supported by National Research Foundation of Korea(NRF)grants(Number RS-2023-00247545)funded by the Korean government(MSIP)operated by Korea Institute for Advancement of Technology(KIAT)(No.P0023704,Semiconductor-Track Graduate School(SKKU)).
文摘In the burgeoning field of wearable electronics,flexible and durable conductors that can maintain consistent electrical properties under various conditions are critically needed.This research introduces a novel composite material comprising eutectic gallium-indium(EGaIn)and a polybutadiene-based urethane(PBU)specifically designed to address this challenge.EGaIn,renowned for its superior conductivity due to its liquid state at room temperature,is strategically combined with PBU,which offers inherent flexibility and remarkable self-healing capabilities derived from reversible Diels–Alder reactions.Additionally,the composite maintains exceptional electrical resistance stability,withstanding mechanical strains up to 135%without compromising performance.The material’s self-healing capability is attributed to the autonomous mending properties of EGaIn and the reversible Diels–Alder reactions in the PBU matrix.The result is an efficient restoration of the composite’s original properties upon incurring damage.Furthermore,the composite’s adaptability is showcased through its printability,allowing for precise patterning conducive to custom-designed wearable devices.
基金supported by the National Key R&D Program of China(2017YFE0131300)the National Natural Science Foundation of China(62174167,61874128)+4 种基金the Frontier Science Key Program of CAS(QYZDY-SSW-JSC032)the Key Research Project of Zhejiang Laboratory(2021MD0AC01)the Program of Shanghai Academic Research Leader(19XD1404600)K.C.Wong Education Foundation(GJTD-2019-11)NCBiR within the Polish-China(WPC/130/NIR-Si/2018)。
基金supported by the National Key Research and Development Program of China(Grant No.2017YFE0131300)the National Natural Science Foundation of China(Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220,and 61804157)+7 种基金the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDY-SSWJSC032,and ZDBS-LY-JSC009)the Chinese-Austrian Cooperative Research and Development Project(Grant No.GJHZ201950)the Shanghai Science and Technology Innovation Action Plan Program(Grant No.17511106202)the Program of Shanghai Academic Research Leader(Grant No.19XD1404600)the Shanghai Youth Top Talent ProgramShanghai Sailing Program(Grant Nos.19YF1456200,and 19YF1456400)the K.C.Wong Education Foundation(Grant No.GJTD-2019-11)the NCBiR within the Polish-China(Grant No.WPC/130/NIR-Si/2018)。
文摘In this paper,InGaAs p-i-n photodetectors(PDs)on an InP/SiO2/Si(InPOI)substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate.The quality of epitaxial layers on the InPOI substrate is similar to that on the InP substrate.The photo responsivities of both devices measured at 1.55μm are comparable,which are about 0.808-0.828 A W^(-1).Although the dark current of PD on the InPOI substrate is twice as high as that of PD on the InP substrate at 300 K,the peak detectivities of both PDs are comparable.In general,the overall performance of the InPOI-based PD is comparable to the InP-based PD,demonstrating that the ion-slicing technology is a promising route to enable the highquality Si-based InP platform for the full photonic integration on a Si substrate.