期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integrated Multi-Head Self-Attention Transformer model for electricity demand prediction incorporating local climate variables
1
作者 Sujan Ghimire Thong Nguyen-Huy +3 位作者 Mohanad S.AL-Musaylh Ravinesh C.Deo David Casillas-Perez Sancho Salcedo-Sanz 《Energy and AI》 2023年第4期620-644,共25页
This paper develops a trustworthy deep learning model that considers electricity demand(G)and local climate conditions.The model utilises Multi-Head Self-Attention Transformer(TNET)to capture critical information from... This paper develops a trustworthy deep learning model that considers electricity demand(G)and local climate conditions.The model utilises Multi-Head Self-Attention Transformer(TNET)to capture critical information from𝐻,to attain reliable predictions with local climate(rainfall,radiation,humidity,evaporation,and maximum and minimum temperatures)data from Energex substations in Queensland,Australia.The TNET model is then evaluated with deep learning models(Long-Short Term Memory LSTM,Bidirectional LSTM BILSTM,Gated Recurrent Unit GRU,Convolutional Neural Networks CNN,and Deep Neural Network DNN)based on robust model assessment metrics.The Kernel Density Estimation method is used to generate the prediction interval(PI)of electricity demand forecasts and derive probability metrics and results to show the developed TNET model is accurate for all the substations.The study concludes that the proposed TNET model is a reliable electricity demand predictive tool that has high accuracy and low predictive errors and could be employed as a stratagem by demand modellers and energy policy-makers who wish to incorporate climatic factors into electricity demand patterns and develop national energy market insights and analysis systems. 展开更多
关键词 Electricity demand forecasting Sustainable energy Artificial Intelligence Deep learning Transformer Networks Kernel Density Estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部