Microwave technology offers the possibility for pre-hospital stroke detection as we have previously demonstrated using non-imaging diagnostics. The focus in this paper is on image-based diagnostics wherein the technic...Microwave technology offers the possibility for pre-hospital stroke detection as we have previously demonstrated using non-imaging diagnostics. The focus in this paper is on image-based diagnostics wherein the technical and computational complexities of image reconstruction are a challenge for clinical realization. Herein we investigate whether information about a patient’s brain anatomy obtained prior to a stroke event can be used to facilitate image-based stroke diagnostics. A priori information can be obtained by segmenting the patient’s head tissues from magnetic resonance images. Expert manual segmentation is presently the gold standard, but it is laborious and subjective. A fully automatic method is thus desirable. This paper presents an evaluation of several such methods using both synthetic magnetic resonance imaging (MRI) data and real data from four healthy subjects. The segmentation was performed on the full 3D MRI data, whereas the electromagnetic evaluation was performed using a 2D slice. The methods were evaluated in terms of: i) tissue classification accuracy over all tissues with respect to ground truth, ii) the accuracy of the simulated electromagnetic wave propagation through the head, and iii) the accuracy of the image reconstruction of the hemorrhage. The segmentation accuracy was measured in terms of the degree of overlap (Dice score) with the ground truth. The electromagnetic simulation accuracy was measured in terms of signal deviation relative to the simulation based on the ground truth. Finally, the image reconstruction accuracy was measured in terms of the Dice score, relative error of dielectric properties, and visual comparison between the true and reconstructed intracerebral hemorrhage. The results show that accurate segmentation of tissues (Dice score = 0.97) from the MRI data can lead to accurate image reconstruction (relative error = 0.24) for the intracerebral hemorrhage in the subject’s brain. They also suggest that accurate automated segmentation can be used as a surrogate for manual segmentation and can facilitate the rapid diagnosis of intracerebral hemorrhage in stroke patients using a microwave imaging system.展开更多
文摘Microwave technology offers the possibility for pre-hospital stroke detection as we have previously demonstrated using non-imaging diagnostics. The focus in this paper is on image-based diagnostics wherein the technical and computational complexities of image reconstruction are a challenge for clinical realization. Herein we investigate whether information about a patient’s brain anatomy obtained prior to a stroke event can be used to facilitate image-based stroke diagnostics. A priori information can be obtained by segmenting the patient’s head tissues from magnetic resonance images. Expert manual segmentation is presently the gold standard, but it is laborious and subjective. A fully automatic method is thus desirable. This paper presents an evaluation of several such methods using both synthetic magnetic resonance imaging (MRI) data and real data from four healthy subjects. The segmentation was performed on the full 3D MRI data, whereas the electromagnetic evaluation was performed using a 2D slice. The methods were evaluated in terms of: i) tissue classification accuracy over all tissues with respect to ground truth, ii) the accuracy of the simulated electromagnetic wave propagation through the head, and iii) the accuracy of the image reconstruction of the hemorrhage. The segmentation accuracy was measured in terms of the degree of overlap (Dice score) with the ground truth. The electromagnetic simulation accuracy was measured in terms of signal deviation relative to the simulation based on the ground truth. Finally, the image reconstruction accuracy was measured in terms of the Dice score, relative error of dielectric properties, and visual comparison between the true and reconstructed intracerebral hemorrhage. The results show that accurate segmentation of tissues (Dice score = 0.97) from the MRI data can lead to accurate image reconstruction (relative error = 0.24) for the intracerebral hemorrhage in the subject’s brain. They also suggest that accurate automated segmentation can be used as a surrogate for manual segmentation and can facilitate the rapid diagnosis of intracerebral hemorrhage in stroke patients using a microwave imaging system.