As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations bas...As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models.展开更多
Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrate...Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI), were employed using two indicator selection methods: Total Data Set (TDS) and Minimum Data Set (MDS), focusing on agricultural fields in Golestan province, Iran. A total of 89 soil samples were collected and analyzed for particle size distribution, organic carbon, calcium carbonate equivalent (CCE), electrical conductivity (EC), pH, and plant-essential nutrients, including nitrogen, phosphorus, potassium, zinc, copper, manganese, and iron. Principal component analysis (PCA) was used to extract MDS from TDS, and geostatistical adaptation and correlation analyses were performed to determine the optimal soil quality evaluation index. Our results show that the exponential model better suits the spatial structure of soil quality indicators (IQIMDS: 0.955). Conformity and correlation analyses indicate that the IQI index outperformed the NQI index in estimating soil quality. The superiority of the TDS technique over the MDS technique in terms of accuracy (IQITDSs kappa: 0.155). Linear relationships between different methods showed a higher correlation coefficient (R2 = 0.43) through the application of IQI. This study suggests the use of IQIMDS to provide a reliable measurement that is particularly useful in assessing the quality of agricultural soil.展开更多
The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The pr...The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.展开更多
Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the ap...Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the application of this tool,thus urging the need to estimate soil properties and consequently,to perform the spatial distribution.This research attempted to examine the proficiency of three machine learning methods(RF:Random Forest;Cubist:Regression Tree;and SVM:Support Vector Machine)to predict soil physical and mechanical properties,saturated hydraulic conductivity(Ks),Cohesion measured by fall-cone at the saturated(Psat)and dry(Pdry)states,hardness index(HI)and dry shear strength(SS)by integrating environmental variables and soil features in the Zayandeh-Rood dam watershed,central Iran.To determine the best combination of input variables,three scenarios were examined as follows:scenarioⅠ,terrain attributes derivative from a digital elevation model(DEM)+remotely sensed data;scenarioⅡ,covariates of scenarioⅠ+selected climatic data and some thematic maps;scenarioⅢ,covariates in scenarioⅡ+intrinsic soil properties(Clay,Silt,Sand,bulk density(BD),soil organic matter(SOM),calcium carbonate equivalent(CCE),mean weight diameter(MWD)and geometric weight diameter(GWD)).The results showed that for Ks,Psat Pdry and SS,the best performance was found by the RF model in the third scenario,with R2=0.53,0.32,0.31 and 0.41,respectively,while for soil hardness index(HI),Cubist model in the third scenario with R2=0.25 showed the highest performance.For predicting Ks and Psat,soil characteristics(i.e.clay and soil SOM and BD),and land use were the most important variables.For predicting Pdry,HI,and SS,some topographical characteristics(Valley depth,catchment area,mltiresolution of ridge top flatness index),and some soil characteristics(i.e.clay,SOM and MWD)were the most important input variables.The results of this research present moderate accuracy,however,the methodology employed provides quick and costeffective information serving as the scientific basis for decision-making goals.展开更多
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since...Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization.展开更多
Phytosanitary products are frequently used by agriculture worldwide and in Cameroon in particular;this with a view to protecting crops and improving agricultural yields (Riba and Silvy, 1989;Bonny, 1996;Mattews et al....Phytosanitary products are frequently used by agriculture worldwide and in Cameroon in particular;this with a view to protecting crops and improving agricultural yields (Riba and Silvy, 1989;Bonny, 1996;Mattews et al., 2003). There are many studies on the retention of pesticides by soils, but in Cameroon, very few studies have focused on the interaction between andosols, ferralsols and the pesticides paraquat and carbendazim, which are widely used by farmers in Foumbot and Ebolowa. The objective of this work is to provide elements of understanding on the mobility of paraquat along the profile of andosolic soils of Foumbot and ferralitic soils of Ebolowa during which the soil samples were collected. The soil samples were characterized by the analytical method in accordance with the international standards at the Research Unit of Soil Analysis and Environmental Chemistry of the University of Dschang, as recommended by Pauwels et al. (1992). The different analyses of the soil samples were carried out according to the classical procedures of the Faculty of Agronomy and Agricultural Sciences, Soil, Plant and Water Laboratory. Statistical analysis was performed. Pearson correlation tests were performed to correlate soil physicochemical properties with soil adsorption parameters;thus, it has been observed that there is a strong correlation between the CEC and the rate of organic matter. The experimental device used for this study is a block device. This study was carried out in batch mode and by varying the contact time, the pH of the solution, the mass of the soil, the concentration of the solution. The physicochemical characterizations of the soils were studied. The mineralogical analysis was carried out by X-ray and infrared diffraction. The analysis of the samples was carried out by UV-Vis absorption spectrometry. The study of the adsorption kinetics showed that the adsorption of paraquat by the soils of Foumbot NK1, NK3 and Ebolowa MIN1 is better described by the pseudo-second order kinetic model since the q<sub>e</sub> values obtained from this model are close to the experimental values. The study of the adsorption kinetics showed that the adsorption process is very fast during the first thirty minutes and medium to very slow afterwards. The half-reaction times indicate that the kinetics of pollutant accumulation is faster on the surface of fallow soil NK1 (t1/2 = 11.30 min.), followed by cultivated soil NK3 (t1/2 = 19.94 min.) and finally the bare ground of Ebolowa MIN1 (t1/2 = 264.05 min.). Three adsorption models have been studied and the isotherms are best described by the Freundlich and Dubinin-Radushkevitch model. The adsorption of paraquat by the andosolic soils of Foumbot and the ferralitic soils of Ebolowa is best described by the Freundlich model. Bare forest soil MIN1 with a depth of 25 to 50 cm better describes adsorption with a correlation coefficient R<sup>2</sup> = 0.951 μmol/g compared to cultivated soil NK3 with a surface layer of 0 to 25 cm and finally fallows soil NK1 with a depth of 25 to 50 cm. The strong biological activity of the 25 to 50 cm deep layer of MIN1, the C/N ratio of 11.00 testifies to a good mineralization of this soil. The clay content of 45% would promote the retention of paraquat and reduce the presence of this pesticide at depth.展开更多
The aims of this study were to determine the dose of inorganic fertilizer of NPK combined with organic fertilizer from CM(Cow Manure)to grow paddy Inpara 8 variety planted in a tidal soil.This experiment was done in a...The aims of this study were to determine the dose of inorganic fertilizer of NPK combined with organic fertilizer from CM(Cow Manure)to grow paddy Inpara 8 variety planted in a tidal soil.This experiment was done in a green house and conducted from July to December 2020.This pot experiment used factorial completely randomized design with two factors and three replications.The first factor was NPK which consisted of two kinds of NPK fertilizers which were urea 200 kg/ha,SP-36100 kg/ha,KCl 100 kg/ha from recommended fertilization and urea 37 kg/ha,SP-3656 kg/ha,KCl 183 kg/ha from calculation of the specific location soil analysis(in situ data).The second factor was dosage of CM at 5,7.5 and 10 tons/ha respectively.The results showed that NPK fertilization from specific location combined with CM at 10 tons/ha was the best treatment for rice production in an infertile tidal swampland producing 2.20 tons/ha.展开更多
Salinity stress is a major environmental stress affecting crop productivity,and its negative impact on global food security is only going to increase,due to current climate trends.Salinity tolerance was present in wil...Salinity stress is a major environmental stress affecting crop productivity,and its negative impact on global food security is only going to increase,due to current climate trends.Salinity tolerance was present in wild crop relatives but significantly weakened during domestication.Regaining it back requires a good understanding of molecular mechanisms and traits involved in control of plant ionic and ROS homeostasis.This review summarizes our current knowledge on the role of major plant hormones(auxin,cytokinins,abscisic acid,salicylic acid,and jasmonate)in plants adaptation to soil salinity.We firstly discuss the role of hormones in controlling root tropisms,root growth and architecture(primary root elongation,meristematic activity,lateral root development,and root hairs formation).Hormone-mediated control of uptake and sequestration of key inorganic ions(sodium,potassium,and calcium)is then discussed followed by regulation of cell redox balance and ROS signaling in salt-stressed roots.Finally,the role of epigenetic alterations such as DNA methylation and histone modifications in control of plant ion and ROS homeostasis and signaling is discussed.This data may help develop novel strategies for breeding and cultivating salt-tolerant crops and improving agricultural productivity in saline regions.展开更多
A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc a...A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc angles(35 degrees,40 degrees,and 45 degrees),three different punch spacings(250 mm,500 mm,and 1000 mm),and three different forward speeds(1.3 km/h,1.5 km/h,1.7 km/h)to investigate their effects on field capacity,effective field efficiency,and punching efficiency.Utilizing randomised block design and response surface methods,the experimental plan for optimization was created.All of the independent variables’combined effects on the dependent variables were found to be statistically significant.The influence of operating speed and mulch paper thickness was found to be the most significant on the dependent variable.The effective field capacity and field efficiency increased from 0.11 ha/h to 0.19 ha/h and 72.04 percent to 89.51 percent,respectively,by increasing mulch paper thickness from 15μm to 25μm and operating speed from 1.3 km/h to 1.7 km/h,whereas punching efficiency fell from 85.18 percent to 84.40 percent.Mulch paper of 15μm and a disc angle value of 40 degrees were optimised from the independent factors that were chosen for optimal soil covering over the laid plastic mulch sheet.Punching efficiency was maximised with performance optimised at 500 mm punch spacing.Additionally,the machine operated more efficiently at 1.5 km/h.展开更多
Peri-urban areas are playing an increasingly crucial role in the agricultural development and intensification in Indonesia.Peri-urban agriculture is highly vulnerable to change compared with urban and rural agricultur...Peri-urban areas are playing an increasingly crucial role in the agricultural development and intensification in Indonesia.Peri-urban agriculture is highly vulnerable to change compared with urban and rural agriculture,due to its location in transitional areas.Indicators of peri-urban agricultural intensity can help guide regional development.In this study,we assessed the sustainability of peri-urban areas based on agricultural intensity in Karawang Regency,Indonesia.We developed a village-based index to assess the region’s agricultural intensity by rescaling the village agriculture index(VAI)and combining the local sustainability index(LSI)with factor analysis.Since the unit of analysis is the village,we modified the LSI to the village sustainability index(VSI).In addition,we also developed a logical matrix analysis to determine the level of agricultural sustainability(LoAS)of each village.The combined results of the three indices(VAI,VSI,and LoAS)generated information about agricultural sustainability.The results indicated that peri-urban villages with high agricultural intensity tended to exhibit low levels of social welfare,economic development,and disaster risk.Moreover,high agricultural intensity did not necessarily ensure the prosperity of the people.Instead,there was the economic disparity among the villages in the study area.Encouraging diversity of agricultural intensity seems to be more critical than promoting agricultural intensity itself.Overall,this study highlights the distinctive characteristics and dynamic of peri-urban areas.New approaches,variables,and information regarding the combination of agricultural intensity and sustainability need to be developed as valuable tools for regional planning.展开更多
Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grow...Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.展开更多
The use of plant extracts as antifungal agents is gaining increasing attention, particularly for the control of black pod disease in cocoa. Despite extensive research, current strategies haven’t been entirely effecti...The use of plant extracts as antifungal agents is gaining increasing attention, particularly for the control of black pod disease in cocoa. Despite extensive research, current strategies haven’t been entirely effective. This study evaluated the effectiveness of Cymbopogon citratus and Blumea balsamifora leaf extracts, both individually and in combination, against Phytophthora megakarya. We assessed the efficacy of the most promising combination (75% B. balsamifera, 25% C. citratus) after storage at room temperature for up to 9 days. Agar microdilution and in vivo bioassays were conducted to determine antifungal susceptibility and effectiveness. Blumea extract exhibited the highest overall inhibitory activity, with the lowest minimum inhibitory concentration (117 µl mL−1) while C. citratus had a narrower range of MIC (146 to 233 µl mL−1). The combination of C. citratus and B. balsamifera demonstrated a synergistic effect against P. megakarya, achieving growth inhibition on V8 media (92.72 ± 4.20% to 100%) and on artificially infected detached pod cortex (92.24 ± 4.53% to 98.75 ± 1.25%), which was not significantly different from the positive control (Ridomil). Furthermore, this combination maintained its effectiveness for up to 9 days at room temperature. These findings suggest that combining plant extracts can enhance their antifungal properties.展开更多
Twenty varieties of improved sorghum were grown in Machache at the Department of Agricultural Research station, located (29˚22'60"S and 27˚52'0"E) in the central foothills of Lesotho in Maseru distri...Twenty varieties of improved sorghum were grown in Machache at the Department of Agricultural Research station, located (29˚22'60"S and 27˚52'0"E) in the central foothills of Lesotho in Maseru district. The varieties were planted in a randomized complete block design. At maturity, they were harvested, dried, threshed, milled and analyzed in the crop science laboratory at the National University of Lesotho. The proximate and mineral contents were analyzed from samples in a completely randomized design with three replicates. The proximate composition parameters measured were crude proteins, crude fiber, crude fat, moisture content, and carbohydrates. The minerals analyzed were, phosphorus, sodium, calcium, magnesium, potassium, copper, zinc, iron, and magnesium. The results showed the nutritional contents ranging from (4.7% - 16.16%), (0.35% - 2.10%), (1.25% - 4.00%), (71.60% - 84.06%), (5.53% - 10.18%), for protein, fat, fiber and carbohydrate, and moisture content, respectively. Mineral content ranged from (1342.96 - 3500.34 mg/kg), (25.97 - 185.25 mg/kg), (50.71 - 511.71 mg/kg), (29.35 - 4542.13 mg/kg), (577.19 - 3041.52 mg/kg), (0.25 - 4.07 mg/kg), (1.96 - 18.61 mg/kg), (67.14 - 122.96 mg/kg), (4.73 - 11.39 mg/kg) for phosphorus, sodium, calcium, magnesium, potassium, copper, zinc, iron, and manganese respectively. The following varieties were found to have the highest and appreciable amounts of nutrients and minerals that are crucial in the country diet;protein content was KARI Mtama 1, zinc, IESX 16 2533-SB-SSI-19, and iron IESX 16 2535-SB-SSI-34.展开更多
The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ...Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.展开更多
Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah regi...Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.展开更多
The cropping system is based on traditional farming in rural areas. In this way, yields of some food crops like yam are very low considering their high need for nutrients. The nutrient-rich land is under high land pre...The cropping system is based on traditional farming in rural areas. In this way, yields of some food crops like yam are very low considering their high need for nutrients. The nutrient-rich land is under high land pressure as it is occupied by cash crops such as oil palm and rubber at the expense of food crops and soil fertility is declining. The study was conducted in Grand-Lahou to assess the effect of organic matter provided by legumes in increasing yam yield. The randomized complete block design included four (4) treatments: Arachis hypogaea + yam association (T1), Acacia mangium + yam association (T2), Arachis + Acacia mangium + yam association (T3) and pure yam crop (T0). The parameters measured were: the soil nutrients content, the rate of mineralization of organic matter through the C/N ratio as well as the yield of yam through different techniques that allowed the objective of the study to be achieved. It was noted a slight improvement of nitrogen and organic carbon in all treatments with a higher value recorded in the T2 treatment. The C/N ratio decreased to 12 in all treatments compared to the control, which reflects a normal decomposition of the organic matter. Treatment T1 increased yam yield (8.4 t/ha) in contrast to treatments T2 (4.1 t/ha) and T3 (2.8 t/ha). Legume-based treatments T2 and T3 were associated with a significant decrease in yam yield, resulting in losses of −46.34% to −25.09%, while treatment T1 resulted in a gain of 28.57%. As a result, the treatments involving legumes contributed to normalizing the organic matter content of the soil. The simultaneous association of these two legumes led to a decrease in yam production, contrary to the treatment associating only groundnut.展开更多
This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the s...This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.展开更多
Photocatalytic nitrogen fixation(PNF)using nanostructured materials is a promising approach that is likely to rival the most expensive and highenergy-demanding Harber-Bosch method of ammonia synthesis.This is because ...Photocatalytic nitrogen fixation(PNF)using nanostructured materials is a promising approach that is likely to rival the most expensive and highenergy-demanding Harber-Bosch method of ammonia synthesis.This is because the process is deemed the most sustainable method of nitrogen fixation,through the direct production of ammonia and/or nitrate from water and atmospheric nitrogen with the aid of sunlight;and the system has zero emission of carbon dioxide.The PNF process is receiving much attention making it among the hot research topics in recent years.There is,however,a knowledge gap between the photocatalytic processes and the nanostructured photocatalyst.In this review,therefore,recent breakthroughs and achievements in the photocatalytic reaction processes were discussed.In addition,the nanostructured photocatalysts used in nitrogen fixation were discussed in detail.This includes the importance of the nanomaterials in photocatalysis,the types used in photocatalytic nitrogen fixation,and the synthesis methods of the nanomaterials.Also,limitations that affect the photocatalytic reaction processes as well as the ways of overcoming them such as the creation of oxygen,sulphur,and nitrogen vacancies,doping techniques,formation of heterojunctions,and the use of cocatalysts were all discussed in detail.From the aforementioned discussions,PNF could be seen as the most eco-friendly and sustainable method of nitrogen fixation.However,understanding the mechanisms of PNF is very critical to identifying and designing an efficient photocatalytic system.展开更多
文摘As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models.
文摘Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI), were employed using two indicator selection methods: Total Data Set (TDS) and Minimum Data Set (MDS), focusing on agricultural fields in Golestan province, Iran. A total of 89 soil samples were collected and analyzed for particle size distribution, organic carbon, calcium carbonate equivalent (CCE), electrical conductivity (EC), pH, and plant-essential nutrients, including nitrogen, phosphorus, potassium, zinc, copper, manganese, and iron. Principal component analysis (PCA) was used to extract MDS from TDS, and geostatistical adaptation and correlation analyses were performed to determine the optimal soil quality evaluation index. Our results show that the exponential model better suits the spatial structure of soil quality indicators (IQIMDS: 0.955). Conformity and correlation analyses indicate that the IQI index outperformed the NQI index in estimating soil quality. The superiority of the TDS technique over the MDS technique in terms of accuracy (IQITDSs kappa: 0.155). Linear relationships between different methods showed a higher correlation coefficient (R2 = 0.43) through the application of IQI. This study suggests the use of IQIMDS to provide a reliable measurement that is particularly useful in assessing the quality of agricultural soil.
文摘The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.
基金the Iranian National Science Foundation(INSF)for the financial support of this research under Project Number 4004169Isfahan University of Technology。
文摘Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the application of this tool,thus urging the need to estimate soil properties and consequently,to perform the spatial distribution.This research attempted to examine the proficiency of three machine learning methods(RF:Random Forest;Cubist:Regression Tree;and SVM:Support Vector Machine)to predict soil physical and mechanical properties,saturated hydraulic conductivity(Ks),Cohesion measured by fall-cone at the saturated(Psat)and dry(Pdry)states,hardness index(HI)and dry shear strength(SS)by integrating environmental variables and soil features in the Zayandeh-Rood dam watershed,central Iran.To determine the best combination of input variables,three scenarios were examined as follows:scenarioⅠ,terrain attributes derivative from a digital elevation model(DEM)+remotely sensed data;scenarioⅡ,covariates of scenarioⅠ+selected climatic data and some thematic maps;scenarioⅢ,covariates in scenarioⅡ+intrinsic soil properties(Clay,Silt,Sand,bulk density(BD),soil organic matter(SOM),calcium carbonate equivalent(CCE),mean weight diameter(MWD)and geometric weight diameter(GWD)).The results showed that for Ks,Psat Pdry and SS,the best performance was found by the RF model in the third scenario,with R2=0.53,0.32,0.31 and 0.41,respectively,while for soil hardness index(HI),Cubist model in the third scenario with R2=0.25 showed the highest performance.For predicting Ks and Psat,soil characteristics(i.e.clay and soil SOM and BD),and land use were the most important variables.For predicting Pdry,HI,and SS,some topographical characteristics(Valley depth,catchment area,mltiresolution of ridge top flatness index),and some soil characteristics(i.e.clay,SOM and MWD)were the most important input variables.The results of this research present moderate accuracy,however,the methodology employed provides quick and costeffective information serving as the scientific basis for decision-making goals.
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金This study was supported by the Key Project of Natural Science Research for Colleges and Universities in Anhui Province(KJ2021A0533,2023AH050345)the Excellent Scientific Research and Innovation Team of Universities in Anhui Province(2022AH010029).
文摘Seed germination with selenium(Se)is promising for producing Se-biofortified foods.Mungbean(Vigna radiata(L.)Wilczek)sprout is freshly eaten as a salad dressed with sauce,making it superior for Se biofortification.Since the Se safety range for the human body is extremely narrow,it is imperative to evaluate the genotypic responses of mungbean sprouts to Se.This study evaluated the Se enrichment capacity and interaction withflavonoids and antioxidant systems in sprouts of 20 mungbean germplasms.Selenium treatment was done by immersing mung-bean seeds in 20μM sodium selenite solution for 8 h.Afterward,the biomass,Se amounts,flavonoid(particularly vitexin and isovitexin)contents,antioxidant capacity,and key biosynthetic gene expressions were measured.Sprout Se content was 2.0-7.0μg g^(-1) DW among the 20 mungbean germplasms.Selenium treatment differentially affected the biomass,totalflavonoid,vitexin,isovitexin,antioxidant enzyme activities,and antioxidant capacities of the mungbean germplasms.Eight germplasms showed increased biomass(p<0.05),the highest increasing by 127%,but 13 did not phenotypically respond to Se treatment.Seven and six germplasms showed varied levels of vitexin and isovitexin increment after Se treatment,the highest measuring 2.67-and 2.87-folds for vitexin and isovitexin,respectively.Two mungbeanflavonoid biosynthesis genes,chalcone synthase(VrCHS)and chalcone isomerase(VrCHI)were significantly up-regulated in the germplasms with increased vitexin and isovitexin levels(p<0.05).Moreover,Se enrichment capacity was significantly correlated with the vitexin,isovitexin,and antiox-idant capacities.In conclusion,mungbean sprouts could be a useful Se-biofortified food,but the Se enrichment capacity and nutritional response must be determined for each germplasm before commercialization.
文摘Phytosanitary products are frequently used by agriculture worldwide and in Cameroon in particular;this with a view to protecting crops and improving agricultural yields (Riba and Silvy, 1989;Bonny, 1996;Mattews et al., 2003). There are many studies on the retention of pesticides by soils, but in Cameroon, very few studies have focused on the interaction between andosols, ferralsols and the pesticides paraquat and carbendazim, which are widely used by farmers in Foumbot and Ebolowa. The objective of this work is to provide elements of understanding on the mobility of paraquat along the profile of andosolic soils of Foumbot and ferralitic soils of Ebolowa during which the soil samples were collected. The soil samples were characterized by the analytical method in accordance with the international standards at the Research Unit of Soil Analysis and Environmental Chemistry of the University of Dschang, as recommended by Pauwels et al. (1992). The different analyses of the soil samples were carried out according to the classical procedures of the Faculty of Agronomy and Agricultural Sciences, Soil, Plant and Water Laboratory. Statistical analysis was performed. Pearson correlation tests were performed to correlate soil physicochemical properties with soil adsorption parameters;thus, it has been observed that there is a strong correlation between the CEC and the rate of organic matter. The experimental device used for this study is a block device. This study was carried out in batch mode and by varying the contact time, the pH of the solution, the mass of the soil, the concentration of the solution. The physicochemical characterizations of the soils were studied. The mineralogical analysis was carried out by X-ray and infrared diffraction. The analysis of the samples was carried out by UV-Vis absorption spectrometry. The study of the adsorption kinetics showed that the adsorption of paraquat by the soils of Foumbot NK1, NK3 and Ebolowa MIN1 is better described by the pseudo-second order kinetic model since the q<sub>e</sub> values obtained from this model are close to the experimental values. The study of the adsorption kinetics showed that the adsorption process is very fast during the first thirty minutes and medium to very slow afterwards. The half-reaction times indicate that the kinetics of pollutant accumulation is faster on the surface of fallow soil NK1 (t1/2 = 11.30 min.), followed by cultivated soil NK3 (t1/2 = 19.94 min.) and finally the bare ground of Ebolowa MIN1 (t1/2 = 264.05 min.). Three adsorption models have been studied and the isotherms are best described by the Freundlich and Dubinin-Radushkevitch model. The adsorption of paraquat by the andosolic soils of Foumbot and the ferralitic soils of Ebolowa is best described by the Freundlich model. Bare forest soil MIN1 with a depth of 25 to 50 cm better describes adsorption with a correlation coefficient R<sup>2</sup> = 0.951 μmol/g compared to cultivated soil NK3 with a surface layer of 0 to 25 cm and finally fallows soil NK1 with a depth of 25 to 50 cm. The strong biological activity of the 25 to 50 cm deep layer of MIN1, the C/N ratio of 11.00 testifies to a good mineralization of this soil. The clay content of 45% would promote the retention of paraquat and reduce the presence of this pesticide at depth.
文摘The aims of this study were to determine the dose of inorganic fertilizer of NPK combined with organic fertilizer from CM(Cow Manure)to grow paddy Inpara 8 variety planted in a tidal soil.This experiment was done in a green house and conducted from July to December 2020.This pot experiment used factorial completely randomized design with two factors and three replications.The first factor was NPK which consisted of two kinds of NPK fertilizers which were urea 200 kg/ha,SP-36100 kg/ha,KCl 100 kg/ha from recommended fertilization and urea 37 kg/ha,SP-3656 kg/ha,KCl 183 kg/ha from calculation of the specific location soil analysis(in situ data).The second factor was dosage of CM at 5,7.5 and 10 tons/ha respectively.The results showed that NPK fertilization from specific location combined with CM at 10 tons/ha was the best treatment for rice production in an infertile tidal swampland producing 2.20 tons/ha.
基金supported by Australian Research Council and National Natural Science Foundation of China grants to Sergey Shabala。
文摘Salinity stress is a major environmental stress affecting crop productivity,and its negative impact on global food security is only going to increase,due to current climate trends.Salinity tolerance was present in wild crop relatives but significantly weakened during domestication.Regaining it back requires a good understanding of molecular mechanisms and traits involved in control of plant ionic and ROS homeostasis.This review summarizes our current knowledge on the role of major plant hormones(auxin,cytokinins,abscisic acid,salicylic acid,and jasmonate)in plants adaptation to soil salinity.We firstly discuss the role of hormones in controlling root tropisms,root growth and architecture(primary root elongation,meristematic activity,lateral root development,and root hairs formation).Hormone-mediated control of uptake and sequestration of key inorganic ions(sodium,potassium,and calcium)is then discussed followed by regulation of cell redox balance and ROS signaling in salt-stressed roots.Finally,the role of epigenetic alterations such as DNA methylation and histone modifications in control of plant ion and ROS homeostasis and signaling is discussed.This data may help develop novel strategies for breeding and cultivating salt-tolerant crops and improving agricultural productivity in saline regions.
文摘A machine with manual operation for mulch-laying machine with a punching arrangement was developed,and its performance was assessed at three different mulch paper thicknesses(15 m,20 m and 25 m),three different disc angles(35 degrees,40 degrees,and 45 degrees),three different punch spacings(250 mm,500 mm,and 1000 mm),and three different forward speeds(1.3 km/h,1.5 km/h,1.7 km/h)to investigate their effects on field capacity,effective field efficiency,and punching efficiency.Utilizing randomised block design and response surface methods,the experimental plan for optimization was created.All of the independent variables’combined effects on the dependent variables were found to be statistically significant.The influence of operating speed and mulch paper thickness was found to be the most significant on the dependent variable.The effective field capacity and field efficiency increased from 0.11 ha/h to 0.19 ha/h and 72.04 percent to 89.51 percent,respectively,by increasing mulch paper thickness from 15μm to 25μm and operating speed from 1.3 km/h to 1.7 km/h,whereas punching efficiency fell from 85.18 percent to 84.40 percent.Mulch paper of 15μm and a disc angle value of 40 degrees were optimised from the independent factors that were chosen for optimal soil covering over the laid plastic mulch sheet.Punching efficiency was maximised with performance optimised at 500 mm punch spacing.Additionally,the machine operated more efficiently at 1.5 km/h.
文摘Peri-urban areas are playing an increasingly crucial role in the agricultural development and intensification in Indonesia.Peri-urban agriculture is highly vulnerable to change compared with urban and rural agriculture,due to its location in transitional areas.Indicators of peri-urban agricultural intensity can help guide regional development.In this study,we assessed the sustainability of peri-urban areas based on agricultural intensity in Karawang Regency,Indonesia.We developed a village-based index to assess the region’s agricultural intensity by rescaling the village agriculture index(VAI)and combining the local sustainability index(LSI)with factor analysis.Since the unit of analysis is the village,we modified the LSI to the village sustainability index(VSI).In addition,we also developed a logical matrix analysis to determine the level of agricultural sustainability(LoAS)of each village.The combined results of the three indices(VAI,VSI,and LoAS)generated information about agricultural sustainability.The results indicated that peri-urban villages with high agricultural intensity tended to exhibit low levels of social welfare,economic development,and disaster risk.Moreover,high agricultural intensity did not necessarily ensure the prosperity of the people.Instead,there was the economic disparity among the villages in the study area.Encouraging diversity of agricultural intensity seems to be more critical than promoting agricultural intensity itself.Overall,this study highlights the distinctive characteristics and dynamic of peri-urban areas.New approaches,variables,and information regarding the combination of agricultural intensity and sustainability need to be developed as valuable tools for regional planning.
基金the National council for scientific and technological development(CNPq)and Higher Education Personnel Improvement Coordination(CAPES)。
文摘Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.
文摘The use of plant extracts as antifungal agents is gaining increasing attention, particularly for the control of black pod disease in cocoa. Despite extensive research, current strategies haven’t been entirely effective. This study evaluated the effectiveness of Cymbopogon citratus and Blumea balsamifora leaf extracts, both individually and in combination, against Phytophthora megakarya. We assessed the efficacy of the most promising combination (75% B. balsamifera, 25% C. citratus) after storage at room temperature for up to 9 days. Agar microdilution and in vivo bioassays were conducted to determine antifungal susceptibility and effectiveness. Blumea extract exhibited the highest overall inhibitory activity, with the lowest minimum inhibitory concentration (117 µl mL−1) while C. citratus had a narrower range of MIC (146 to 233 µl mL−1). The combination of C. citratus and B. balsamifera demonstrated a synergistic effect against P. megakarya, achieving growth inhibition on V8 media (92.72 ± 4.20% to 100%) and on artificially infected detached pod cortex (92.24 ± 4.53% to 98.75 ± 1.25%), which was not significantly different from the positive control (Ridomil). Furthermore, this combination maintained its effectiveness for up to 9 days at room temperature. These findings suggest that combining plant extracts can enhance their antifungal properties.
文摘Twenty varieties of improved sorghum were grown in Machache at the Department of Agricultural Research station, located (29˚22'60"S and 27˚52'0"E) in the central foothills of Lesotho in Maseru district. The varieties were planted in a randomized complete block design. At maturity, they were harvested, dried, threshed, milled and analyzed in the crop science laboratory at the National University of Lesotho. The proximate and mineral contents were analyzed from samples in a completely randomized design with three replicates. The proximate composition parameters measured were crude proteins, crude fiber, crude fat, moisture content, and carbohydrates. The minerals analyzed were, phosphorus, sodium, calcium, magnesium, potassium, copper, zinc, iron, and magnesium. The results showed the nutritional contents ranging from (4.7% - 16.16%), (0.35% - 2.10%), (1.25% - 4.00%), (71.60% - 84.06%), (5.53% - 10.18%), for protein, fat, fiber and carbohydrate, and moisture content, respectively. Mineral content ranged from (1342.96 - 3500.34 mg/kg), (25.97 - 185.25 mg/kg), (50.71 - 511.71 mg/kg), (29.35 - 4542.13 mg/kg), (577.19 - 3041.52 mg/kg), (0.25 - 4.07 mg/kg), (1.96 - 18.61 mg/kg), (67.14 - 122.96 mg/kg), (4.73 - 11.39 mg/kg) for phosphorus, sodium, calcium, magnesium, potassium, copper, zinc, iron, and manganese respectively. The following varieties were found to have the highest and appreciable amounts of nutrients and minerals that are crucial in the country diet;protein content was KARI Mtama 1, zinc, IESX 16 2533-SB-SSI-19, and iron IESX 16 2535-SB-SSI-34.
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
文摘Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.
文摘Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.
文摘The cropping system is based on traditional farming in rural areas. In this way, yields of some food crops like yam are very low considering their high need for nutrients. The nutrient-rich land is under high land pressure as it is occupied by cash crops such as oil palm and rubber at the expense of food crops and soil fertility is declining. The study was conducted in Grand-Lahou to assess the effect of organic matter provided by legumes in increasing yam yield. The randomized complete block design included four (4) treatments: Arachis hypogaea + yam association (T1), Acacia mangium + yam association (T2), Arachis + Acacia mangium + yam association (T3) and pure yam crop (T0). The parameters measured were: the soil nutrients content, the rate of mineralization of organic matter through the C/N ratio as well as the yield of yam through different techniques that allowed the objective of the study to be achieved. It was noted a slight improvement of nitrogen and organic carbon in all treatments with a higher value recorded in the T2 treatment. The C/N ratio decreased to 12 in all treatments compared to the control, which reflects a normal decomposition of the organic matter. Treatment T1 increased yam yield (8.4 t/ha) in contrast to treatments T2 (4.1 t/ha) and T3 (2.8 t/ha). Legume-based treatments T2 and T3 were associated with a significant decrease in yam yield, resulting in losses of −46.34% to −25.09%, while treatment T1 resulted in a gain of 28.57%. As a result, the treatments involving legumes contributed to normalizing the organic matter content of the soil. The simultaneous association of these two legumes led to a decrease in yam production, contrary to the treatment associating only groundnut.
文摘This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.
文摘Photocatalytic nitrogen fixation(PNF)using nanostructured materials is a promising approach that is likely to rival the most expensive and highenergy-demanding Harber-Bosch method of ammonia synthesis.This is because the process is deemed the most sustainable method of nitrogen fixation,through the direct production of ammonia and/or nitrate from water and atmospheric nitrogen with the aid of sunlight;and the system has zero emission of carbon dioxide.The PNF process is receiving much attention making it among the hot research topics in recent years.There is,however,a knowledge gap between the photocatalytic processes and the nanostructured photocatalyst.In this review,therefore,recent breakthroughs and achievements in the photocatalytic reaction processes were discussed.In addition,the nanostructured photocatalysts used in nitrogen fixation were discussed in detail.This includes the importance of the nanomaterials in photocatalysis,the types used in photocatalytic nitrogen fixation,and the synthesis methods of the nanomaterials.Also,limitations that affect the photocatalytic reaction processes as well as the ways of overcoming them such as the creation of oxygen,sulphur,and nitrogen vacancies,doping techniques,formation of heterojunctions,and the use of cocatalysts were all discussed in detail.From the aforementioned discussions,PNF could be seen as the most eco-friendly and sustainable method of nitrogen fixation.However,understanding the mechanisms of PNF is very critical to identifying and designing an efficient photocatalytic system.