Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that cita...Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.展开更多
Objective To review the recent research progress in dystrophin-related muscular dystrophy includes X-linked hereditary Duchenne and Becker muscular dystrophies (DMD and BMD). Data sources Information included in thi...Objective To review the recent research progress in dystrophin-related muscular dystrophy includes X-linked hereditary Duchenne and Becker muscular dystrophies (DMD and BMD). Data sources Information included in this article was identified by searches of PUBMED and other online resources using the key terms DMD, dystrophin, mutations, animal models, pathophysiology, gene expression, stem cells, gene therapy, cell therapy, and pharmacological. Study selection Mainly original milestone articles and timely reviews written by major pioneer investigators of the field were selected. Results The key issues related to the genetic basis and pathophysiological factors of the diseases were critically addressed. The availabilities and advantages of various animal models for the diseases were described. Major molecular and cellular therapeutic approaches were also discussed, many of which have indeed exhibited some success in pre-clinical studies but at the same time encountered a number of technical hurdles, including the efficient and systemic delivery of a functional gene and myogenic precursor/stem cells to repair genetic defects. Conclusions Further understanding of pathophysiological mechanisms at molecular levels and regenerative properites of myogenic precursor/stem cells will promote the development of multiple therapeutic strategies. The combined use of multiple strategies may represent the major challenge as well as the greatest hope for the therapy of these diseases in coming years.展开更多
基金funded by the Research Center for Science and Technology in Medicine(RCSTiM),Tehran University of Medical Sciences,Tehran(TUMS),Tehran,Iran
文摘Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.
文摘Objective To review the recent research progress in dystrophin-related muscular dystrophy includes X-linked hereditary Duchenne and Becker muscular dystrophies (DMD and BMD). Data sources Information included in this article was identified by searches of PUBMED and other online resources using the key terms DMD, dystrophin, mutations, animal models, pathophysiology, gene expression, stem cells, gene therapy, cell therapy, and pharmacological. Study selection Mainly original milestone articles and timely reviews written by major pioneer investigators of the field were selected. Results The key issues related to the genetic basis and pathophysiological factors of the diseases were critically addressed. The availabilities and advantages of various animal models for the diseases were described. Major molecular and cellular therapeutic approaches were also discussed, many of which have indeed exhibited some success in pre-clinical studies but at the same time encountered a number of technical hurdles, including the efficient and systemic delivery of a functional gene and myogenic precursor/stem cells to repair genetic defects. Conclusions Further understanding of pathophysiological mechanisms at molecular levels and regenerative properites of myogenic precursor/stem cells will promote the development of multiple therapeutic strategies. The combined use of multiple strategies may represent the major challenge as well as the greatest hope for the therapy of these diseases in coming years.