期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure-fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure 被引量:15
1
作者 Zhi-feng SHI Hong-zhen GUO +1 位作者 Jian-wei ZHANG Jian-ning YIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2440-2448,共9页
The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with diffe... The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed. 展开更多
关键词 titanium alloy lamellar microstructure fracture toughness crack tip plastic zone toughening mechanism
下载PDF
Shenzhen International Low Carbon City in Development: Practice of Low Carbon Planning Technology Strategy Based on Dynamic Demands 被引量:2
2
作者 Yu Han Li Caige 《China City Planning Review》 CSCD 2016年第3期34-41,共8页
Targeted at the dynamic demands in the rapid urban construction, the planning technology strategy of the Shenzhen International Low Carbon City studies the fl exible index model based on carbon emission evaluation, an... Targeted at the dynamic demands in the rapid urban construction, the planning technology strategy of the Shenzhen International Low Carbon City studies the fl exible index model based on carbon emission evaluation, and adopts rolling development and micro-circulation construction mode to achieve quick returns with small investment. Meanwhile, it also evaluates the application of low carbon technology and gives feedback in time, so as to constantly optimize and complete the low carbon city planning. In detail, it involves industrial planning, ecological restoration, transport planning, energy resource planning, architectural design, etc., for which appropriate approaches are selected according to the principle of rolling development of unit cells and based on different requirements of different stages. The quick-response and fl exible technology system can help the low carbon city to choose an appropriate technology strategy in line with its own characteristics in the start-up stage and rapid development, thus realizing the sustainable leap-forward development and providing reference for other similar regions. 展开更多
关键词 dynamic demand rolling development and micro-circulation construction mode quick-response and fl exible technology system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部