期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Impact of Aluminum-Containing Set Accelerators on Sulfate Resistance of Portland Cement Compositions 被引量:1
1
作者 Alexey S. Brykov Andrey S. Vasiliev Maxim V. Mokeev 《Materials Sciences and Applications》 2013年第12期29-34,共6页
This study contains comparative research of sulfate resistance of ordinary Portland cement pastes with addition of basic aluminum sulfate (hydroxosulfate, Al(OH)1.78(SO4)0.61) and amorphous Al(OH)3. Over 3 months of s... This study contains comparative research of sulfate resistance of ordinary Portland cement pastes with addition of basic aluminum sulfate (hydroxosulfate, Al(OH)1.78(SO4)0.61) and amorphous Al(OH)3. Over 3 months of storing in sodium sulfate solution, the most significant expansion and deterioration occur in case of samples with aluminum hydroxide. During sulfate resistance test, the ratio between aluminum nuclei in AFt (ettringite) and AFm phases was studied by 27Al-MAS NMR, and the impact of aluminum-containing admixtures on this ratio was specified. In accordance with NMR data, in samples with Al(OH)3, the rate of secondary ettringite formation becomes noticeable after one month of storing in sulfate solution. For samples with Al(OH)1.78(SO4)0.61, the rate of elongation and temper of changes in molar ratio between sulfoaluminate phases were comparable with reference samples without admixtures. 展开更多
关键词 Portland Cement Hydration SET Accelerator Basic ALUMINUM SULFATE ALUMINUM HYDROXIDE SULFATE Resistance MAS NMR Spectroscopy
下载PDF
Efficacy of Aluminum Hydroxides as Inhibitors of Alkali-Silica Reactions 被引量:2
2
作者 Alexey Brykov Anna Anisimova 《Materials Sciences and Applications》 2013年第12期1-6,共6页
A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%,... A comparative study of amorphous and crystalline forms of commercial aluminum hydroxides as inhibitors of alkalisilica reactions in Portland cement mortars has been performed. It was found that at dosages of 1% to 3%, amorphous aluminum hydroxide can efficiently inhibit alkali-silica expansion of Portland cement compositions. High inhibiting activity of amorphous Al(OH)3 additives may be explained by their ability to actively bind Ca(OH)2 formed by the hydration of silicate phases of cement, to form ettringite (with participation of gypsum). Crystalline Al(OH)3 additives that do not possess the ability to interact with Ca(OH)2 even after additional grinding, however, demonstrate week properties to inhibit alkali-silica expansion. This may indicate that the inhibitory effect of Al(OH)3 at least—partly, may be given by its influence on the concentration of Al3+ ions in the pore solution. Some expansion of the samples with admixtures of Al(OH)3 observed during the alkaline expansion accelerated test procedure is not associated with the formation of ettringite and is only due to alkali-silicate reactions. 展开更多
关键词 Aluminum HYDROXIDE Alkali-Silica Reaction INHIBITION Portland CEMENT Concrete
下载PDF
Ultrafine Silica Additives Behavior during Alkali-Silica Reaction Long-Term Expansion Test
3
作者 Alexey Brykov Mikhail Voronkov Maxim Mokeev 《Materials Sciences and Applications》 2014年第2期66-72,共7页
A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance ... A silica fume, precipitated silica, metakaolin and siliceous fly ash behavior as constituents of mortars was studied, while mortar samples have been tested for long-term alkali-silica reaction expansion in accordance to the GOST 8269.0 specification. Solid-state 29Si-MAS NMR spectroscopy and thermogravimetric analysis were used to describe Portland cement hydration, supplementary cementitious material pozzolanic reaction and to establish a structure of products of those processes. It was found that long-term test conditions, in contrast to the accelerated test, do not affect the composition of products formed too much, compared to normal conditions. This allows results obtained with long-term test to be expected as more relevant in terms of predicting of supplementary cementitious materials inhibiting properties. 展开更多
关键词 Alkali-Silica REACTION SUPPLEMENTARY Cementitious Materials MAS NMR THERMOGRAVIMETRIC Analysis Pozzolanic REACTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部