Treatment of advanced hepatocellular carcinoma remains unsatisfying and so far only prognostic biomarkers like α-fetoprotein have been established. No clear predictive biomarker is currently available for standard of...Treatment of advanced hepatocellular carcinoma remains unsatisfying and so far only prognostic biomarkers like α-fetoprotein have been established. No clear predictive biomarker is currently available for standard of care therapies, including targeted therapies like sorafenib. Novel therapeutic options like immune checkpoint inhibitors may pose new challenges to identification and validation of such markers. Currently, PD-L1 expression via immunohistochemistry and tumor mutational burden via next-generation sequencing are explored as predictive biomarkers for these novel treatments. Limited tissue availability due to lack of biopsies still restricts the use of tissue based approaches. Novel methods exploring circulating or cell free nucleic acids(DNA, RNA or miRNAcontaining exosomes) could provide a new opportunity to establish predictive biomarkers. Epigenetic profiling and next-generation sequencing approaches from liquid biopsies are under development. Sample size, etiologic and geographical background need to be carefully addressed in such studies to achieve meaningful results that could be translated into clinical practice. Proteomics, metabolomics and molecular imaging are further emerging technologies.展开更多
文摘Treatment of advanced hepatocellular carcinoma remains unsatisfying and so far only prognostic biomarkers like α-fetoprotein have been established. No clear predictive biomarker is currently available for standard of care therapies, including targeted therapies like sorafenib. Novel therapeutic options like immune checkpoint inhibitors may pose new challenges to identification and validation of such markers. Currently, PD-L1 expression via immunohistochemistry and tumor mutational burden via next-generation sequencing are explored as predictive biomarkers for these novel treatments. Limited tissue availability due to lack of biopsies still restricts the use of tissue based approaches. Novel methods exploring circulating or cell free nucleic acids(DNA, RNA or miRNAcontaining exosomes) could provide a new opportunity to establish predictive biomarkers. Epigenetic profiling and next-generation sequencing approaches from liquid biopsies are under development. Sample size, etiologic and geographical background need to be carefully addressed in such studies to achieve meaningful results that could be translated into clinical practice. Proteomics, metabolomics and molecular imaging are further emerging technologies.