OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was per...OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was performed to select functional reconstruction and rehabilitation following brachial plexus injury-related English articles published between January 1990 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". Meanwhile, a computer-based search of CBM was carried out to select the similar Chinese articles published between January 1998 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". STUDY SELECTION: The materials were checked primarily, and the literatures of functional reconstruction and rehabilitation of brachial plexus injury were selected and the full texts were retrieved. Inclusive criteria: ①Functional reconstruction following brachial plexus injury. ②Rehabilitation method of brachial plexus injury. Exclusive criteria: Reviews, repetitive study, and Meta analytical papers. DATA EXTRACTION: Forty-six literatures about functional reconstruction following brachial plexus injury were collected, and 36 of them met the inclusive criteria. DATA SYNTHESIS: Brachial plexus injury causes the complete or incomplete palsy of muscle of upper extremity. The treatment of brachial plexus is to displace not very important nerves to the distal end of very important nerve, called nerve transfer, which is an important method to treat brachial plexus injury. Postoperative rehabilitations consist of sensory training and motor functional training. It is very important to keep the initiativeness of exercise. Besides recovering peripheral nerve continuity by operation, combined treatment and accelerating neural regeneration, active motors of cerebral cortex is also the important factor to reconstruct peripheral nerve function. CONCLUSION: Consciously and actively strengthening functional exercise after operation is helpful to form cerebral plasticity and produce voluntary movements, can re-educate re-dominated muscle, obviously improves postoperative therapeutic effect and promote functional reconstruction.展开更多
文摘OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was performed to select functional reconstruction and rehabilitation following brachial plexus injury-related English articles published between January 1990 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". Meanwhile, a computer-based search of CBM was carried out to select the similar Chinese articles published between January 1998 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". STUDY SELECTION: The materials were checked primarily, and the literatures of functional reconstruction and rehabilitation of brachial plexus injury were selected and the full texts were retrieved. Inclusive criteria: ①Functional reconstruction following brachial plexus injury. ②Rehabilitation method of brachial plexus injury. Exclusive criteria: Reviews, repetitive study, and Meta analytical papers. DATA EXTRACTION: Forty-six literatures about functional reconstruction following brachial plexus injury were collected, and 36 of them met the inclusive criteria. DATA SYNTHESIS: Brachial plexus injury causes the complete or incomplete palsy of muscle of upper extremity. The treatment of brachial plexus is to displace not very important nerves to the distal end of very important nerve, called nerve transfer, which is an important method to treat brachial plexus injury. Postoperative rehabilitations consist of sensory training and motor functional training. It is very important to keep the initiativeness of exercise. Besides recovering peripheral nerve continuity by operation, combined treatment and accelerating neural regeneration, active motors of cerebral cortex is also the important factor to reconstruct peripheral nerve function. CONCLUSION: Consciously and actively strengthening functional exercise after operation is helpful to form cerebral plasticity and produce voluntary movements, can re-educate re-dominated muscle, obviously improves postoperative therapeutic effect and promote functional reconstruction.