In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whol...In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.展开更多
Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and a...Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.展开更多
Physical factors affecting the survival of Tachypleus tridentatus eggs were investigated by translocating their eggs between the high intertidal zone and the low intertidal zone of a known spawning site.The mean egg s...Physical factors affecting the survival of Tachypleus tridentatus eggs were investigated by translocating their eggs between the high intertidal zone and the low intertidal zone of a known spawning site.The mean egg survival rates per day were highest in the mid intertidal zone(45.1%±25.4%)and the lowest in the low intertidal zone(13.3%±27.6%).Differences in the elevation,air exposure time,and water content of the spawning ground were significant factors determining the egg survival rates.Excessive or insufficient air exposure time resulted in inadequate water content at higher and lower intertidal zones and could reduce egg survival.On the other hand,moderate saturation and dehydration were repeated with each tidal movement in the mid intertidal zone.This dynamic is considered as one of the crucial factors for the survival of eggs and is considered optimal for spawning.Therefore,the protection of the mid intertidal zone is imperative for maximizing the egg survival rate in Tsuyazaki Cove where almost all suitable nesting sites have disappeared due to coastal development.By protecting these optimal sites for spawning and recovering other optimal sites on suitable beaches,a positive contribution can be made to future management and conservation.The study also suggests that translocating eggs from marginal to optimal spawning sites might be a recovery strategy for this globally endangered species.展开更多
Fundamental ecological information on the Chinese kissing loach (Leptobotia tchangi) was collected in the North Tiaoxi River, China, in September 2010. The length-frequency distribution calculated using FiSAT software...Fundamental ecological information on the Chinese kissing loach (Leptobotia tchangi) was collected in the North Tiaoxi River, China, in September 2010. The length-frequency distribution calculated using FiSAT software showed the population structure of this kissing loach could be classified into four age groups suggesting that the life span of the loach should be 3 - 4 years. A stepwise multiple linear regression analysis revealed that the density of this kissing loach was significantly and positively correlated with water velocity, while the body size was significantly and positively correlated with river bed pebble size. It suggested that water velocity and variation of pebble size play important roles in the full life history of this kissing loach. Thus, maintenance of the rapid current and variety of substrate are essential for the conservation of this species under the present conditions in the river, which also can support river restoration being in harmony with survival of this kissing loach.展开更多
We analyzed the determinants of building bridges after comparing bridge islands and non-bridge islands.In addition,we examined the population change before and after the bridge building and the factors influencing the...We analyzed the determinants of building bridges after comparing bridge islands and non-bridge islands.In addition,we examined the population change before and after the bridge building and the factors influencing the change.As a result,a remote island with high cost-effectiveness was selected and bridged.The early bridge was built in remote islands with fragile social infrastructure,and the outflow of population was suppressed owing to the improvement in standard of living by securing the medical care and education available in the bridge destination.However,around the year 2000,there are few remote islands where the changes in populations are influenced after a bridge was built.展开更多
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili...Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.展开更多
The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying ...The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying natural zeolite, namely mordenite, as an inexpensive adsorbent to assess its feasibility for the treatment of fly ash. Batch experiments were performed to investigate the effects of the influential parameters, such as metals initial ion concentration, dosage of adsorbent, liquid to solid (L/S) ratio, and equilibrium concentration of metal on the immobilization of Pb<sup>2</sup><sup>+</sup> and Zn<sup>2+</sup>, in a novel approach. Heavy metals removal efficiency increased with increasing the dosage of mordenite influenced by the media-specific surface area. Heavy metals adsorption is ascribed to various mechanisms of ion exchange and adsorption processes. The Langmuir and Freundlich isotherm models were investigated using the adsorption data. The adsorption process describes better in the Freundlich isotherm model compared to the Langmuir isotherm model with a high determination co-efficient (R<sup>2</sup>), especially for the adsorption of Pb<sup>2+</sup>. In addition, the affinity of mordenite to Pb<sup>2+</sup> was shown to be higher than that of Zn<sup>2+</sup>. This allows the use of mordenite to capture of Pb<sup>2+</sup> in MSWI fly ash. Results raise expectations about using mordenite as a low-cost material for treating MSWI fly ashes. The results show that heavy metal (Pb<sup>2+</sup> and Zn<sup>2+</sup>) removed by mordenite adsorbent is practical and effective. In order to achieve the higher efficiency on heavy metal stabilization in MSWI fly ash, additional experiments are necessary.展开更多
The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by us...The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.展开更多
We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic press...We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic pressure experience radial buckling. As a result of this, different buckling modes are obtained depending on the inter-tube separation d as well as the number of constituent tubes N and the innermost tube diameter. All of the buckling modes are classified into two deformation phases. In the first phase, which corresponds to an elliptic deformation, the radial stiffness increases rapidly with increasing N. In contrast, the second phase yields wavy, corrugated structures along the circumference for which the radial stiffness declines with increasing N. The hard-to-soft phase transition in radial buckling is a direct consequence of the core-shell structure of MWNTs. Special attention is devoted to how the variation in d affects the critical tube number Nc, which separates the two deformation phases observed in N -walled nanotubes, i.e., the elliptic phase for N Nc. We demonstrate that a larger d tends to result in a smaller Nc, which is attributed to the primary role of the interatomic forces between concentric tubes in the hard-to-soft transition during the radial buckling of MWNTs.展开更多
Hurst’s memory that roots in early work of the British hydrologist H.E. Hurst remains an open problem in stochastic hydrology. Today, the Hurst analysis is widely used for the hydrological studies for the memory and ...Hurst’s memory that roots in early work of the British hydrologist H.E. Hurst remains an open problem in stochastic hydrology. Today, the Hurst analysis is widely used for the hydrological studies for the memory and characteristics of time series and many methodologies have been developed for the analysis. So, there are many different techniques for the estimation of the Hurst exponent (H). However, the techniques can produce different characteristics for the persistence of a time series each other. This study uses several techniques such as adjusted range, rescaled range (RR) analysis, modified rescaled range (MRR) analysis, 1/f power spectral density analysis, Maximum Likelihood Estimation (MLE), detrended fluctuations analysis (DFA), and aggregated variance time (AVT) method for the Hurst exponent estimation. The generated time series from chaos and stochastic systems are analyzed for the comparative study of the techniques. Then, this study discusses the advantages and disadvantages of the techniques and also the limitations of them. We found that DFA is the most appropriate technique for the Hurst exponent estimation for both the short term memory and long term memory. We analyze the SOI (Southern Oscillations Index) and 6 tree-ring series for USA sites by means of DFA and the BDS statistic is used for nonlinearity test of the series. From the results, we found that SOI series is nonlinear time series which has a long term memory of H = 0.92. Contrary to earlier work, all the tree ring series are not random from our analysis. A certain tree ring series show a long term memory of H = 0.97 and nonlinear property. Therefore, we can say that the SOI series has the properties of long memory and nonlinearity and tree ring series could also show long memory and non-linearity.展开更多
The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk a...The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk about the river. Also recently, the "MIZBERING Project" has been opening up possibilities for renewing riverside uses of lost activities from the old days in Japan. This project is being conducted by citizens, companies and government administrations with an interest in waterside areas. The First MIZBER1NG Zuibaiji River Conference was held to discuss the issues of the Zuibaiji Basin. Its purpose was to visit and search out the nature and history of the entire Zuibaiji Basin from its mountains to the sea and to rediscover the Zuibaiji Basin, and finally to discuss future plans for the Zuibaiji Basin and Imazu Tidal Flat at its outlet. After visiting the Zuibaiji Basin, we discovered a problem that the Zubaiji Dam is holding not only water but also sand, and this problem affects the environment of the Zuibaiji Basin, such as its ecosystem and topography. Finally, we provided a venue for the local people to discuss problems and future plans for the Zuibaiji Basin.展开更多
The purpose of this study was to explore the water usage profile of future Vietnamese households by carrying out a controlled living experiment with Vietnamese high-income households. By studying showering time, flow ...The purpose of this study was to explore the water usage profile of future Vietnamese households by carrying out a controlled living experiment with Vietnamese high-income households. By studying showering time, flow rate and toilet-use frequency of these households, the study revealed the water usage believed to be representative of future households in light of continued urbanization. This study also determined that the average time of showering was 9.7 minutes per person per day with an average flow rate of 12 L/minute for the existing shower head and 6.6 L/minute for the water-saving shower head. Toilet usage frequency was 5.25 times per person per day, and there was no difference with the results for an average (middle-income) household.展开更多
This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometr...This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometric properties of the power spectral density function (PSDF) of the ground acceleration are developed first. Subsequently, deterministic measures for the frequency content of the ground acceleration are also developed. These measures are then used for identifying resonance and criticality in stochastic earthquake models and 110 acceleration records measured at rock, stiff, medium and soft soil sites. The unfavorable earthquake record for a given structure is defined as the record having a narrow frequency content and dominant frequency close to the structure fundamental natural frequency. Accordingly, the measures developed in this study may provide a basis for selecting records that are capable of producing the highest structural response. Numerical verifications are provided on damage caused to structures by identified resonant records.展开更多
Bottom ash is an inevitable by-product fi'om municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine a...Bottom ash is an inevitable by-product fi'om municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore ,investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%-0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250℃) in incinerators.展开更多
It has often been reported that, when building structures are subjected to near-fault earthquake ground motions, horizontal and vertical impulsive inputs may cause critical damage during the first few seconds. In prac...It has often been reported that, when building structures are subjected to near-fault earthquake ground motions, horizontal and vertical impulsive inputs may cause critical damage during the first few seconds. In practical design of building structures, however, the safety check, taking into account the effect of multi-component ground motions, is hardly conducted except the design of important structures such as high-rise buildings and nuclear power plants. Ftirthel'more, it is not clear how the correlation of multi-component ground motions influences the actual safety of structures. In this paper, the detailed property of critical excitation is discussed in association with the relationship between the characteristics of ground motions and those of structures. The properties of various auto power spectral density (PSD) functions of the horizontal and vertical ground motions are investigated, and those of the critical cross PSD function of these two-directional ground motions are found by a devised algorithm in a feasible complex plane. A closed-form expression is derived from the critical relation of the auto PSD functions of the simultaneous inputs. This critical excitation method provides us with a new approach for earthquake-resistant design against the possible future earthquake which causes the critical damages to buildings.展开更多
Temporal variation of dynamical modal properties of a base-isolated building is investigated using earthquake records in the building. A batch processing least-squares estimation method is applied to segment-wise time...Temporal variation of dynamical modal properties of a base-isolated building is investigated using earthquake records in the building. A batch processing least-squares estimation method is applied to segment-wise time-series data. To construct an input-output system,an auto-regressive model with exogenous input (ARX) of second-order including a forgetting coefficient as a weighting coefficient is used for the estimation of modal parameters. The fundamental and second natural frequencies and the damping ratios of the fundamental and second natural modes of the base-isolated building are identified in the time domain. The identified results are consistent with the results obtained from the micro-tremor vibration data,forced-vibration test data and earthquake records in the present base-isolated building in the case of taking into account the amplitude-dependency of the isolators and viscous dampers. It is finally pointed out that several factors,e.g.,amplitude dependency of the isolator and damper system and special characteristics of the series-type viscous damper system,may be related complicatedly with the temporal variation in modal properties of the above-mentioned system.展开更多
A massive earthquake of magnitude Mw 7.3 shook Kermanshah Province in Western Iran along the Iraqi border on November 12,2017.The epicenter of the earthquake was approximately 10 km southwest of Ezgeleh Town in Kerman...A massive earthquake of magnitude Mw 7.3 shook Kermanshah Province in Western Iran along the Iraqi border on November 12,2017.The epicenter of the earthquake was approximately 10 km southwest of Ezgeleh Town in Kermanshah Province.Field observations almost 4 months after the disaster indicated that the earthquake had caused tremendous damage to most structures in both urban and rural areas,and left an enormous amount of disaster waste.To investigate the status of the dam-age and disposal of the disaster waste,remote sensing was conducted using an unmanned aerial vehicle(drone).Through the capture of low-altitude images by drone and the generation of 3D models,the quantity of debris accumulated in a waste disposal facility near Sarpol Zahab was estimated at approximately 480,000 m3.A compositional analysis of the disaster waste was performed using an imaging technique.This revealed that the disaster waste was largely composed of concrete(39.6%),hollow brick(35.4%),and gypsum(21.2%)in the urban area,whereas soil was the dominant component(77.4%)in the rural area.The damage caused to most buildings was essentially due to their non-standard construction.The manage-ment of debris from the damaged buildings was a critical issue for the authorities,and the lack of preparedness was a serious drawback that consumed an enormous amount of time,budget,and workforce.A practical post-disaster preparedness plan would help the decision-makers and the public to manage the otherwise overwhelming nature of the post-disaster conditions in a more reasonable manner.展开更多
文摘In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.
基金This work was supported bythe National Science Fundfor Distinguished Young Scholars of Ministry of Eduction,Chi-na
文摘Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.
文摘Physical factors affecting the survival of Tachypleus tridentatus eggs were investigated by translocating their eggs between the high intertidal zone and the low intertidal zone of a known spawning site.The mean egg survival rates per day were highest in the mid intertidal zone(45.1%±25.4%)and the lowest in the low intertidal zone(13.3%±27.6%).Differences in the elevation,air exposure time,and water content of the spawning ground were significant factors determining the egg survival rates.Excessive or insufficient air exposure time resulted in inadequate water content at higher and lower intertidal zones and could reduce egg survival.On the other hand,moderate saturation and dehydration were repeated with each tidal movement in the mid intertidal zone.This dynamic is considered as one of the crucial factors for the survival of eggs and is considered optimal for spawning.Therefore,the protection of the mid intertidal zone is imperative for maximizing the egg survival rate in Tsuyazaki Cove where almost all suitable nesting sites have disappeared due to coastal development.By protecting these optimal sites for spawning and recovering other optimal sites on suitable beaches,a positive contribution can be made to future management and conservation.The study also suggests that translocating eggs from marginal to optimal spawning sites might be a recovery strategy for this globally endangered species.
文摘Fundamental ecological information on the Chinese kissing loach (Leptobotia tchangi) was collected in the North Tiaoxi River, China, in September 2010. The length-frequency distribution calculated using FiSAT software showed the population structure of this kissing loach could be classified into four age groups suggesting that the life span of the loach should be 3 - 4 years. A stepwise multiple linear regression analysis revealed that the density of this kissing loach was significantly and positively correlated with water velocity, while the body size was significantly and positively correlated with river bed pebble size. It suggested that water velocity and variation of pebble size play important roles in the full life history of this kissing loach. Thus, maintenance of the rapid current and variety of substrate are essential for the conservation of this species under the present conditions in the river, which also can support river restoration being in harmony with survival of this kissing loach.
文摘We analyzed the determinants of building bridges after comparing bridge islands and non-bridge islands.In addition,we examined the population change before and after the bridge building and the factors influencing the change.As a result,a remote island with high cost-effectiveness was selected and bridged.The early bridge was built in remote islands with fragile social infrastructure,and the outflow of population was suppressed owing to the improvement in standard of living by securing the medical care and education available in the bridge destination.However,around the year 2000,there are few remote islands where the changes in populations are influenced after a bridge was built.
文摘Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.
文摘The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying natural zeolite, namely mordenite, as an inexpensive adsorbent to assess its feasibility for the treatment of fly ash. Batch experiments were performed to investigate the effects of the influential parameters, such as metals initial ion concentration, dosage of adsorbent, liquid to solid (L/S) ratio, and equilibrium concentration of metal on the immobilization of Pb<sup>2</sup><sup>+</sup> and Zn<sup>2+</sup>, in a novel approach. Heavy metals removal efficiency increased with increasing the dosage of mordenite influenced by the media-specific surface area. Heavy metals adsorption is ascribed to various mechanisms of ion exchange and adsorption processes. The Langmuir and Freundlich isotherm models were investigated using the adsorption data. The adsorption process describes better in the Freundlich isotherm model compared to the Langmuir isotherm model with a high determination co-efficient (R<sup>2</sup>), especially for the adsorption of Pb<sup>2+</sup>. In addition, the affinity of mordenite to Pb<sup>2+</sup> was shown to be higher than that of Zn<sup>2+</sup>. This allows the use of mordenite to capture of Pb<sup>2+</sup> in MSWI fly ash. Results raise expectations about using mordenite as a low-cost material for treating MSWI fly ashes. The results show that heavy metal (Pb<sup>2+</sup> and Zn<sup>2+</sup>) removed by mordenite adsorbent is practical and effective. In order to achieve the higher efficiency on heavy metal stabilization in MSWI fly ash, additional experiments are necessary.
文摘The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.
文摘We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic pressure experience radial buckling. As a result of this, different buckling modes are obtained depending on the inter-tube separation d as well as the number of constituent tubes N and the innermost tube diameter. All of the buckling modes are classified into two deformation phases. In the first phase, which corresponds to an elliptic deformation, the radial stiffness increases rapidly with increasing N. In contrast, the second phase yields wavy, corrugated structures along the circumference for which the radial stiffness declines with increasing N. The hard-to-soft phase transition in radial buckling is a direct consequence of the core-shell structure of MWNTs. Special attention is devoted to how the variation in d affects the critical tube number Nc, which separates the two deformation phases observed in N -walled nanotubes, i.e., the elliptic phase for N Nc. We demonstrate that a larger d tends to result in a smaller Nc, which is attributed to the primary role of the interatomic forces between concentric tubes in the hard-to-soft transition during the radial buckling of MWNTs.
文摘Hurst’s memory that roots in early work of the British hydrologist H.E. Hurst remains an open problem in stochastic hydrology. Today, the Hurst analysis is widely used for the hydrological studies for the memory and characteristics of time series and many methodologies have been developed for the analysis. So, there are many different techniques for the estimation of the Hurst exponent (H). However, the techniques can produce different characteristics for the persistence of a time series each other. This study uses several techniques such as adjusted range, rescaled range (RR) analysis, modified rescaled range (MRR) analysis, 1/f power spectral density analysis, Maximum Likelihood Estimation (MLE), detrended fluctuations analysis (DFA), and aggregated variance time (AVT) method for the Hurst exponent estimation. The generated time series from chaos and stochastic systems are analyzed for the comparative study of the techniques. Then, this study discusses the advantages and disadvantages of the techniques and also the limitations of them. We found that DFA is the most appropriate technique for the Hurst exponent estimation for both the short term memory and long term memory. We analyze the SOI (Southern Oscillations Index) and 6 tree-ring series for USA sites by means of DFA and the BDS statistic is used for nonlinearity test of the series. From the results, we found that SOI series is nonlinear time series which has a long term memory of H = 0.92. Contrary to earlier work, all the tree ring series are not random from our analysis. A certain tree ring series show a long term memory of H = 0.97 and nonlinear property. Therefore, we can say that the SOI series has the properties of long memory and nonlinearity and tree ring series could also show long memory and non-linearity.
文摘The Zuibaiji River is located in the west of Fukuoka city, which has a rich natural resources and history but various problems as well. In order to solve some of these problems, stakeholders need to observe and talk about the river. Also recently, the "MIZBERING Project" has been opening up possibilities for renewing riverside uses of lost activities from the old days in Japan. This project is being conducted by citizens, companies and government administrations with an interest in waterside areas. The First MIZBER1NG Zuibaiji River Conference was held to discuss the issues of the Zuibaiji Basin. Its purpose was to visit and search out the nature and history of the entire Zuibaiji Basin from its mountains to the sea and to rediscover the Zuibaiji Basin, and finally to discuss future plans for the Zuibaiji Basin and Imazu Tidal Flat at its outlet. After visiting the Zuibaiji Basin, we discovered a problem that the Zubaiji Dam is holding not only water but also sand, and this problem affects the environment of the Zuibaiji Basin, such as its ecosystem and topography. Finally, we provided a venue for the local people to discuss problems and future plans for the Zuibaiji Basin.
文摘The purpose of this study was to explore the water usage profile of future Vietnamese households by carrying out a controlled living experiment with Vietnamese high-income households. By studying showering time, flow rate and toilet-use frequency of these households, the study revealed the water usage believed to be representative of future households in light of continued urbanization. This study also determined that the average time of showering was 9.7 minutes per person per day with an average flow rate of 12 L/minute for the existing shower head and 6.6 L/minute for the water-saving shower head. Toilet usage frequency was 5.25 times per person per day, and there was no difference with the results for an average (middle-income) household.
基金Project (No. JSPS-P-08073)supported by the Japanese Society for the Promotion of Science
文摘This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometric properties of the power spectral density function (PSDF) of the ground acceleration are developed first. Subsequently, deterministic measures for the frequency content of the ground acceleration are also developed. These measures are then used for identifying resonance and criticality in stochastic earthquake models and 110 acceleration records measured at rock, stiff, medium and soft soil sites. The unfavorable earthquake record for a given structure is defined as the record having a narrow frequency content and dominant frequency close to the structure fundamental natural frequency. Accordingly, the measures developed in this study may provide a basis for selecting records that are capable of producing the highest structural response. Numerical verifications are provided on damage caused to structures by identified resonant records.
文摘Bottom ash is an inevitable by-product fi'om municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore ,investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%-0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250℃) in incinerators.
基金supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (Nos. 18360264 and 21360267)
文摘It has often been reported that, when building structures are subjected to near-fault earthquake ground motions, horizontal and vertical impulsive inputs may cause critical damage during the first few seconds. In practical design of building structures, however, the safety check, taking into account the effect of multi-component ground motions, is hardly conducted except the design of important structures such as high-rise buildings and nuclear power plants. Ftirthel'more, it is not clear how the correlation of multi-component ground motions influences the actual safety of structures. In this paper, the detailed property of critical excitation is discussed in association with the relationship between the characteristics of ground motions and those of structures. The properties of various auto power spectral density (PSD) functions of the horizontal and vertical ground motions are investigated, and those of the critical cross PSD function of these two-directional ground motions are found by a devised algorithm in a feasible complex plane. A closed-form expression is derived from the critical relation of the auto PSD functions of the simultaneous inputs. This critical excitation method provides us with a new approach for earthquake-resistant design against the possible future earthquake which causes the critical damages to buildings.
基金supported by the Grant-in-Aid for Scientific Research (No. 10650562) from the Ministry of EducationScience, Sports and Cul-ture of Japan, the Grant-in-Aid for Scientific Research (No. 16560496) from the Japan Society for the Promotion of Sciencethe Col-laboration Project between Kyoto University and Obayashi Corpora-tion (1998-2002), Japan
文摘Temporal variation of dynamical modal properties of a base-isolated building is investigated using earthquake records in the building. A batch processing least-squares estimation method is applied to segment-wise time-series data. To construct an input-output system,an auto-regressive model with exogenous input (ARX) of second-order including a forgetting coefficient as a weighting coefficient is used for the estimation of modal parameters. The fundamental and second natural frequencies and the damping ratios of the fundamental and second natural modes of the base-isolated building are identified in the time domain. The identified results are consistent with the results obtained from the micro-tremor vibration data,forced-vibration test data and earthquake records in the present base-isolated building in the case of taking into account the amplitude-dependency of the isolators and viscous dampers. It is finally pointed out that several factors,e.g.,amplitude dependency of the isolator and damper system and special characteristics of the series-type viscous damper system,may be related complicatedly with the temporal variation in modal properties of the above-mentioned system.
文摘A massive earthquake of magnitude Mw 7.3 shook Kermanshah Province in Western Iran along the Iraqi border on November 12,2017.The epicenter of the earthquake was approximately 10 km southwest of Ezgeleh Town in Kermanshah Province.Field observations almost 4 months after the disaster indicated that the earthquake had caused tremendous damage to most structures in both urban and rural areas,and left an enormous amount of disaster waste.To investigate the status of the dam-age and disposal of the disaster waste,remote sensing was conducted using an unmanned aerial vehicle(drone).Through the capture of low-altitude images by drone and the generation of 3D models,the quantity of debris accumulated in a waste disposal facility near Sarpol Zahab was estimated at approximately 480,000 m3.A compositional analysis of the disaster waste was performed using an imaging technique.This revealed that the disaster waste was largely composed of concrete(39.6%),hollow brick(35.4%),and gypsum(21.2%)in the urban area,whereas soil was the dominant component(77.4%)in the rural area.The damage caused to most buildings was essentially due to their non-standard construction.The manage-ment of debris from the damaged buildings was a critical issue for the authorities,and the lack of preparedness was a serious drawback that consumed an enormous amount of time,budget,and workforce.A practical post-disaster preparedness plan would help the decision-makers and the public to manage the otherwise overwhelming nature of the post-disaster conditions in a more reasonable manner.