Mitochondrial dysfunction, oxidative stress, and their regulation are important fields of study in modem clinical research.Exogenous CoQ is an efficient therapeutic agent, yet its application has leads to continued su...Mitochondrial dysfunction, oxidative stress, and their regulation are important fields of study in modem clinical research.Exogenous CoQ is an efficient therapeutic agent, yet its application has leads to continued suppression of endogenous CoQ synthesis,which limits CoQ applicability. Our aim was to study the state of mitochondrial electron transport chain components, CoQ contentand redox state, superoxide anion radicals and NO production rates, and active MMP-2 and MMP-9 content in rat liver and heartunder treatment with Doxorubicin, CoQ10, and complex preparation of modulators and precursors of CoQ biosynthesis (EPMcomplex). The results demonstrate that treatment with EPM complex and CoQ10 in addition to Doxorubicin administration exertsprotective effect on liver and heart mitochondria, evidenced by restoration of electron transport in respiratory chain, which isexpressed as decreased nitrile complexes formation with Fe-S-proteins and increased ubisemiquinone content. The protective effectsof EPM complex on mitochondrial electron transport chain under Doxorubicin administration is on par with those of CoQ10, anddecreased MMP2 and MMP9 activities signify lessened extracellular matrix destruction. These results demonstrate the viability ofapproaches to correct adverse effects of Doxorubicin by treatment with CoQ10 and e complex of precursors and modulators of itsbiosynthesis.展开更多
文摘Mitochondrial dysfunction, oxidative stress, and their regulation are important fields of study in modem clinical research.Exogenous CoQ is an efficient therapeutic agent, yet its application has leads to continued suppression of endogenous CoQ synthesis,which limits CoQ applicability. Our aim was to study the state of mitochondrial electron transport chain components, CoQ contentand redox state, superoxide anion radicals and NO production rates, and active MMP-2 and MMP-9 content in rat liver and heartunder treatment with Doxorubicin, CoQ10, and complex preparation of modulators and precursors of CoQ biosynthesis (EPMcomplex). The results demonstrate that treatment with EPM complex and CoQ10 in addition to Doxorubicin administration exertsprotective effect on liver and heart mitochondria, evidenced by restoration of electron transport in respiratory chain, which isexpressed as decreased nitrile complexes formation with Fe-S-proteins and increased ubisemiquinone content. The protective effectsof EPM complex on mitochondrial electron transport chain under Doxorubicin administration is on par with those of CoQ10, anddecreased MMP2 and MMP9 activities signify lessened extracellular matrix destruction. These results demonstrate the viability ofapproaches to correct adverse effects of Doxorubicin by treatment with CoQ10 and e complex of precursors and modulators of itsbiosynthesis.