A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of in...A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of influent( C0), removal efficiency of pollutant in wastewater( E), and the standard of reuse water were discussed in this study. According to the experiment result of a toilet wastewater treatment and reuse with membrane bioreactors, R would be set at less than 40%, on which all the concerned parameters could meet with the reuse water standards. To raise R of reuse water in the toilet, an important way was to improve color removal of the wastewater.展开更多
A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was exc...A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.展开更多
Rapid advancement in aerospace technology has successfully enabled long-term life and economic activities in space,particularly in Low Earth Orbit(LEO),extending up to 2000 km from the mean sea level.However,the susta...Rapid advancement in aerospace technology has successfully enabled long-term life and economic activities in space,particularly in Low Earth Orbit(LEO),extending up to 2000 km from the mean sea level.However,the sustainance of the LEO Economy and its Environmental Control and Life Support System(ECLSS)still relies on a regular cargo supply of essential commodities(e.g.,water,food)from Earth,for which there still is a lack of adequate and sustainable technologies.One key challenge in this context is developing water treatment technologies and standards that can perform effectively under microgravity conditions.Solving this technical challenge will be a milestone in providing a scientific basis and the necessary support mechanisms for establishing permanent bases in outer space and beyond.To identify clues towards solving this challenge,we looked back at relevant scientific research exploring novel technologies and standards for deep space exploration,also considering feedback for enhancing these technologies on land.Synthesizing our findings,we share our outlook for the future of drinking water treatment in microgravity.We also bring up a new concept for space aquatic chemistry,considering the closed environment of engineered systems operating in microgravity.展开更多
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacte...Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols' sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.展开更多
Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, ho...Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m^3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 μm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.展开更多
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of gr...Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.展开更多
A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24...A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24 h)were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater.Field experimental data from the membrane bioreactor,both full-scale(500 m/d)and pilot(1.0 m3/d),were used to calculate the net present value(NPV),incorporating both capital expenditure(CAPEX)and operating expenditure.The results showed that the tank cost was estimated above membrane cost in the 38.2%,where capital expenditure contributed 24.2%more than operational expenditure.Tank construction cost was decisive in determining the net present value contributed 62.1%to the capital expenditure.The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane,while flux decline was tolerable.The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent.The upgrade to the membrane bioreactor also benefited further treatments by 10.1%-44.7%lower direct investment.展开更多
It has recently been proposed that recalcitrant dissolved organic carbon(DOC) in groundwater plays a potent etiological role in the peculiar distribution of chronic kidney disease of unknown etiology(CKDu).This study ...It has recently been proposed that recalcitrant dissolved organic carbon(DOC) in groundwater plays a potent etiological role in the peculiar distribution of chronic kidney disease of unknown etiology(CKDu).This study aims to elucidate the interactions of Ca^2+and SO4^2-with a model organic fraction of humic acid(SHA) to determine the possible relationship of CKDu incidence with the DOC in drinking water.XPS and FT-IR methods respectively determined the surface functional groups and chemical composition of protonated dissolved organic carbon(HDOC) in a CKDu high-risk zone(HR) of Sri Lanka and in SHA.Higher surface C composition(87.9%) and lower O(11.4%) were observed for HDOC from the HR region than for SHA(C: 73.8%, O: 24.7%).Aromatic C with less Ocontaining functional groups was observed in HDOC.The IR band at 1170 cm^-1 confirms the formation of organic sulfonate(C–SO3^-) on SHA.A band at 1213 cm^-1 due to organic sulfonate in HDOC from the CKDu HR region was also identified.The IR band at 866 cm^-1 evidenced the formation of CaCO3 on SHA above pH 7.4.XPS data confirmed the presence of sulfur oxidation states corresponding to SO3^2-and SO4^2-at 168.9 eV and 170.1 eV binding energies,respectively.The binding energies at 347 eV and 351 eV for Ca 2p3/2 and Ca 2p1/2 eV,respectively, confirmed the bidentate complexation of Ca^2+with COO-and sulfonate groups on SHA.The organic sulfonate formed is postulated as a uremic toxicant.展开更多
A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to impr...A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber.The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling(KH570) as the initiator and the polymer solution with acrylamide monomer(AM) as the grafting block.The Fourier transform infrared spectrometer-attenuated total reflectance(FTIR-ATR) spectra and the energy dispersive X-ray(EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix.The formation mechanisms,permeation,and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions.The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability,and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2 wt.%.展开更多
Hydrogen sulfide emission in sewer systems is associated with toxicity, corrosion, odour nuisance and high costs treatment. In this study, a novel method to inhibit sulfide generation from sewage by means of glutarald...Hydrogen sulfide emission in sewer systems is associated with toxicity, corrosion, odour nuisance and high costs treatment. In this study, a novel method to inhibit sulfide generation from sewage by means of glutaraldehyde supplementation has been suggested and evaluated under anaerobic conditions. Different concentra- tions of glutaraldehyde at 10, 15, 20, 30 and 40mg.L1 have been investigated. Besides, the possible impacts of glutaraldehyde supplementation on an activated sludge system and an appraisal of the economic aspects are presented as well. As observed from the experimental results, a dosage of 20 mg. L-1 glutaraldehyde resulted in a significant decrease of the sulfide production by 70%-80% in the simulated sewage. Moreover, the impacts of additional glutaraldehyde at 20mg·L^-1 on activated sludge, in terms of chemical oxygen demand removal and oxygen uptake rates, were negligible. From an economical point of view, the cost of the commercial glutaraldehyde products required in the operation, which was calculated on the basis of activated sulfide removal avoidance, was around ε3.7-4.6 S·kg^-1. Therefore it is suggested that glutaraldehyde supplementation is a feasible technique to abate the sulfide problems in sewer systems. Yet further research is required to elucidate the optimum "booster" dosage and the dosing frequency in situ accordingly.展开更多
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced pol...Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.展开更多
基金The Hi_Tech Research and Development Program(863) of China(No:2002AA601220)
文摘A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of influent( C0), removal efficiency of pollutant in wastewater( E), and the standard of reuse water were discussed in this study. According to the experiment result of a toilet wastewater treatment and reuse with membrane bioreactors, R would be set at less than 40%, on which all the concerned parameters could meet with the reuse water standards. To raise R of reuse water in the toilet, an important way was to improve color removal of the wastewater.
文摘A pilot scale(10 m 3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen mill without wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L, BOD 5 under 5 mg/L, turbidity lower than 0 65 NTU, and colour less than 30 DT, and met with the reuse water standard of China. The removal rates of COD, BOD 5, colour, and turbidity were 92 4%, 98 4%, 74% and 98 9%, respectively. Constant flux operation mode was carried out in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impact on energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.
基金supported by the Funds for National Natural Science Foundation of China(Grant No.52070183,52322001)the International Cooperation and Exchange of the National Natural Science Foundation of China(51820105011)the Program of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
文摘Rapid advancement in aerospace technology has successfully enabled long-term life and economic activities in space,particularly in Low Earth Orbit(LEO),extending up to 2000 km from the mean sea level.However,the sustainance of the LEO Economy and its Environmental Control and Life Support System(ECLSS)still relies on a regular cargo supply of essential commodities(e.g.,water,food)from Earth,for which there still is a lack of adequate and sustainable technologies.One key challenge in this context is developing water treatment technologies and standards that can perform effectively under microgravity conditions.Solving this technical challenge will be a milestone in providing a scientific basis and the necessary support mechanisms for establishing permanent bases in outer space and beyond.To identify clues towards solving this challenge,we looked back at relevant scientific research exploring novel technologies and standards for deep space exploration,also considering feedback for enhancing these technologies on land.Synthesizing our findings,we share our outlook for the future of drinking water treatment in microgravity.We also bring up a new concept for space aquatic chemistry,considering the closed environment of engineered systems operating in microgravity.
基金supported by the National Natural Science Foundation of China (No.51178451,51138009)
文摘Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols' sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.
基金supported by the National Natural Science Foundation of China (No.50921064, 50978249)
文摘Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m^3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 μm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.
基金supported by the National Natural Science Foundation of China (No. 51138009)
文摘Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFD0501405)National Natural Science Foundation of China(Grant No.21677161)Major Science&Technology Program for Water Pollution Control and Treatment of China(Nos.2017ZX07102-002 and 2018ZX07105-001).
文摘A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24 h)were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater.Field experimental data from the membrane bioreactor,both full-scale(500 m/d)and pilot(1.0 m3/d),were used to calculate the net present value(NPV),incorporating both capital expenditure(CAPEX)and operating expenditure.The results showed that the tank cost was estimated above membrane cost in the 38.2%,where capital expenditure contributed 24.2%more than operational expenditure.Tank construction cost was decisive in determining the net present value contributed 62.1%to the capital expenditure.The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane,while flux decline was tolerable.The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent.The upgrade to the membrane bioreactor also benefited further treatments by 10.1%-44.7%lower direct investment.
基金supported by the Joint Research Program of National Natural Science Foundation, ChinaNational Science Foundation, Sri Lanka (NSFC-NSF SL) (No.21861142020)+1 种基金the Program of China–Sri Lanka Joint Research and Demonstration Center for Water Technology and China– Sri Lanka Joint Center for Education and Research by Chinese Academy of Sciences, Chinathe Chinese Academy of Sciences–The World Academy of Sciences (CAS–TWAS) President’s Fellowship Program for International Ph.D.students.
文摘It has recently been proposed that recalcitrant dissolved organic carbon(DOC) in groundwater plays a potent etiological role in the peculiar distribution of chronic kidney disease of unknown etiology(CKDu).This study aims to elucidate the interactions of Ca^2+and SO4^2-with a model organic fraction of humic acid(SHA) to determine the possible relationship of CKDu incidence with the DOC in drinking water.XPS and FT-IR methods respectively determined the surface functional groups and chemical composition of protonated dissolved organic carbon(HDOC) in a CKDu high-risk zone(HR) of Sri Lanka and in SHA.Higher surface C composition(87.9%) and lower O(11.4%) were observed for HDOC from the HR region than for SHA(C: 73.8%, O: 24.7%).Aromatic C with less Ocontaining functional groups was observed in HDOC.The IR band at 1170 cm^-1 confirms the formation of organic sulfonate(C–SO3^-) on SHA.A band at 1213 cm^-1 due to organic sulfonate in HDOC from the CKDu HR region was also identified.The IR band at 866 cm^-1 evidenced the formation of CaCO3 on SHA above pH 7.4.XPS data confirmed the presence of sulfur oxidation states corresponding to SO3^2-and SO4^2-at 168.9 eV and 170.1 eV binding energies,respectively.The binding energies at 347 eV and 351 eV for Ca 2p3/2 and Ca 2p1/2 eV,respectively, confirmed the bidentate complexation of Ca^2+with COO-and sulfonate groups on SHA.The organic sulfonate formed is postulated as a uremic toxicant.
基金supported by the National Natural Science Foundation of China (No.51278483)the Institute of Chinese Academy of Sciences in cooperation projects (ZNGZ2011023)the Daqi Technology of Beijing Co.LTD (04F0261601)
文摘A novel inorganic-organic composite membrane,namely poly(vinylidene fluoride) PVDF-glass fiber(PGF) composite membrane,was prepared and reinforced by interfacial ultraviolet(UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber.The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling(KH570) as the initiator and the polymer solution with acrylamide monomer(AM) as the grafting block.The Fourier transform infrared spectrometer-attenuated total reflectance(FTIR-ATR) spectra and the energy dispersive X-ray(EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix.The formation mechanisms,permeation,and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions.The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability,and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2 wt.%.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 20906026 and 51101058) and Shanghai Pujiang Program (09PJ1402900).
文摘Hydrogen sulfide emission in sewer systems is associated with toxicity, corrosion, odour nuisance and high costs treatment. In this study, a novel method to inhibit sulfide generation from sewage by means of glutaraldehyde supplementation has been suggested and evaluated under anaerobic conditions. Different concentra- tions of glutaraldehyde at 10, 15, 20, 30 and 40mg.L1 have been investigated. Besides, the possible impacts of glutaraldehyde supplementation on an activated sludge system and an appraisal of the economic aspects are presented as well. As observed from the experimental results, a dosage of 20 mg. L-1 glutaraldehyde resulted in a significant decrease of the sulfide production by 70%-80% in the simulated sewage. Moreover, the impacts of additional glutaraldehyde at 20mg·L^-1 on activated sludge, in terms of chemical oxygen demand removal and oxygen uptake rates, were negligible. From an economical point of view, the cost of the commercial glutaraldehyde products required in the operation, which was calculated on the basis of activated sulfide removal avoidance, was around ε3.7-4.6 S·kg^-1. Therefore it is suggested that glutaraldehyde supplementation is a feasible technique to abate the sulfide problems in sewer systems. Yet further research is required to elucidate the optimum "booster" dosage and the dosing frequency in situ accordingly.
基金supported by the financial support of the National Natural Science Foundation of China (No. 51278483)the Institute of Chinese Academy of Sciences in cooperation projects (No. ZNGZ2011023)the Daqi Technology of Beijing Co. Ltd. (No. 04F0261601)
文摘Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.