The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource devel...The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource development, and hydropower system reliability in the region rely heavily on monsoon rainfall. Monthly rainfall data from three stations (East Nimar, Barwani, and West Nimar) were analyzed. Initially, the pre-whitening method was applied to eliminate serial correlation effects from the rainfall data series. Subsequently, statistical trends in annual and seasonal rainfall were assessed using both parametric (student-t test) and non-parametric tests [Mann-Kendall, Sen’s slope estimator, and Cumulative Sum (CUSUM)]. The magnitude of the rainfall trend was determined using Theil-Sen’s slope estimator. Spatial analysis of the Mann-Kendall test on an annual basis revealed a statistically insignificant decreasing trend for Barwani and East Nimar and an increasing trend for West Nimar. On a seasonal basis, the monsoon season contributes a significant percentage (88.33%) to the total annual rainfall. The CUSUM test results indicated a shift change detection in annual rainfall data for Barwani in 1997, while shifts were observed in West and East Nimar stations in 1929. These findings offer valuable insights into regional rainfall behavior, aiding in the planning and management of water resources and ecological systems.展开更多
Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universa...Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE) model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT) and their increasing grid space (pixel size) from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet). Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level), before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.展开更多
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a k...Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.展开更多
Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspir...Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspiration(ETc)model can optimize crop water use.The greenhouse microclimate environment has nearly zero wind speed and low radiation,hence low transpiration due to high temperature and humidity.Therefore,matching the greenhouse microclimate with the appropriate ETc model will certainly optimize crop water use efficiency since water is becoming a scarce resource globally,more so in the greenhouse environment.This is one of the main reasons why the gap between the dissemination of various advanced ETc models and the application by the greenhouse crop producers’community needs to be bridged.The likelihood or chances of rapidly disseminating and adopting advances in ETc estimating technology by a larger greenhouse crop producers community will increase if greenhouse ETc models become more user-friendly and available.The contribution of the greenhouse system to increased and sustainable food production must come through improved disseminating,adopting and use of existing greenhouse ETc models.FAO recommends a standard approach for the determination of crop water requirements utilizing the product of reference evapotranspiration(ET0)and crop coefficient(Kc)values.The FAO approach can also be used in greenhouse cultivation systems.However,studies connecting greenhouse technologies and methodologies for measuring ET0 or ETc in greenhouses are not available.There are also few studies undertaken that compared the performance of ET0 or ETc models under different categories of greenhouse conditions.In this review,a link between greenhouse technology and ET0 model or ETc model,and how existing knowledge and methodologies in ET0 or ETc measurements can actually enhance the sustainability of greenhouse farming have been highlighted.The categories of greenhouses,equipment commonly used,and the data collected for ET0 and ETc measurements have been established in the article.This review aimed to evaluate and summarize ET0 and ETc models currently available and being used in the various greenhouse categories.The accuracy assessment levels of the ET0 models about the category of the greenhouse microclimate environment were carried out.展开更多
文摘The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource development, and hydropower system reliability in the region rely heavily on monsoon rainfall. Monthly rainfall data from three stations (East Nimar, Barwani, and West Nimar) were analyzed. Initially, the pre-whitening method was applied to eliminate serial correlation effects from the rainfall data series. Subsequently, statistical trends in annual and seasonal rainfall were assessed using both parametric (student-t test) and non-parametric tests [Mann-Kendall, Sen’s slope estimator, and Cumulative Sum (CUSUM)]. The magnitude of the rainfall trend was determined using Theil-Sen’s slope estimator. Spatial analysis of the Mann-Kendall test on an annual basis revealed a statistically insignificant decreasing trend for Barwani and East Nimar and an increasing trend for West Nimar. On a seasonal basis, the monsoon season contributes a significant percentage (88.33%) to the total annual rainfall. The CUSUM test results indicated a shift change detection in annual rainfall data for Barwani in 1997, while shifts were observed in West and East Nimar stations in 1929. These findings offer valuable insights into regional rainfall behavior, aiding in the planning and management of water resources and ecological systems.
基金the Council of Scientific&Industrial Research (CSIR)
文摘Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE) model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT) and their increasing grid space (pixel size) from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet). Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level), before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.
基金the University Grant Commission(UGC) for providing financial assistance in this research
文摘Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.
基金supported by the Natural Science Foundation of China(Grant No.4186086351509107+6 种基金51609103)the National Key Research and Development Program of China(Grant No.2021YFC32011002017YFA0605002)the Beltand Road Special Foundation of the State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering(Grant No.2020nkzd01)the Postdoctoral Research of Jiangsu Province(Grant No.Bs510001)the Open Fund of High tech Key Laboratory of Agricultural Equipment and Intelligentization of Jiangsu Province(Grant No.JNZ201917)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Domestication of plants by man through greenhouse crop production has revolutionized agricultural farming systems worldwide.Selecting the appropriate greenhouse technology together with the user-friendly evapotranspiration(ETc)model can optimize crop water use.The greenhouse microclimate environment has nearly zero wind speed and low radiation,hence low transpiration due to high temperature and humidity.Therefore,matching the greenhouse microclimate with the appropriate ETc model will certainly optimize crop water use efficiency since water is becoming a scarce resource globally,more so in the greenhouse environment.This is one of the main reasons why the gap between the dissemination of various advanced ETc models and the application by the greenhouse crop producers’community needs to be bridged.The likelihood or chances of rapidly disseminating and adopting advances in ETc estimating technology by a larger greenhouse crop producers community will increase if greenhouse ETc models become more user-friendly and available.The contribution of the greenhouse system to increased and sustainable food production must come through improved disseminating,adopting and use of existing greenhouse ETc models.FAO recommends a standard approach for the determination of crop water requirements utilizing the product of reference evapotranspiration(ET0)and crop coefficient(Kc)values.The FAO approach can also be used in greenhouse cultivation systems.However,studies connecting greenhouse technologies and methodologies for measuring ET0 or ETc in greenhouses are not available.There are also few studies undertaken that compared the performance of ET0 or ETc models under different categories of greenhouse conditions.In this review,a link between greenhouse technology and ET0 model or ETc model,and how existing knowledge and methodologies in ET0 or ETc measurements can actually enhance the sustainability of greenhouse farming have been highlighted.The categories of greenhouses,equipment commonly used,and the data collected for ET0 and ETc measurements have been established in the article.This review aimed to evaluate and summarize ET0 and ETc models currently available and being used in the various greenhouse categories.The accuracy assessment levels of the ET0 models about the category of the greenhouse microclimate environment were carried out.