Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i...Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.展开更多
It is common knowledge that Yarmouk River Basin(YRB)is shared between Jordan and Syria.Management of YRB trans-boundary water resources is attracting increasing interest because it is a strategic water resource for th...It is common knowledge that Yarmouk River Basin(YRB)is shared between Jordan and Syria.Management of YRB trans-boundary water resources is attracting increasing interest because it is a strategic water resource for the riparian countries.Actually,lack of sharing information regarding hydrological flows and basin’s water management between partners’countries makes it difficult to distinguish between natural and man-made factors affecting the water body.Therefore,this study seeks to address and assess the main on-site changes that exert on YRB.Geospatial technique and arithmetic equations were combined to carry out an assessment of the changes on water resources in YRB.Data,information and field measurements of the basin were aggregated,compiled and presented to determine the extent of changes during the period 1980-2020.Remarkable findings showed that precipitation amount in the basin significantly declined during the period 1980-2020 in particularly after the year 1992.Pumping rate of groundwater was 550 x 103 m3/a,exceeding the basin’s safe yield.Draw down of static groundwater level over time approached the value of-3.2 m/a due to the over abstraction in the aquifer body.Additionally,the evaporation rate reached more than 99%in some regions in the basin.Moreover,the number of private wells has increased from 98 wells in 1980 to 126 wells in 2020,showing the excessive extraction of groundwater.These findings indicate that the study area is subjected to a considerable groundwater depletion in the near future due to extensive abstraction,continuous drilling of illegal wells and decreased annual precipitation under the shadow of the rapid population growth and continuous influx of refugees.Therefore,decision makers-informed scenarios are suggested in the development of water resource portfolios,which involves the combination of management and infrastructural actions that enhance the water productivity of the basin.Further studies are recommended to evaluate the on-site changes on water resources in YRB in collaboration with riparian countries and to establish monitoring system for continuous and accurate measurements of the basin.展开更多
Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a...Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a global water quality problem,as it entails threat to human health as well as aquatic ecosystems.Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality.Stable isotope composition of the dissolved nitrate(δ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-)has been applied to identify NO_(3)-sources and the main transformation processes in the upper aquifer system(A1/2,A4,and B2/A7 aquifers)in the Wadi Shueib catchment area,Jordan.Moreover,the stable isotope compositions of the groundwater(δ^(2)H-H_(2)O andδ^(18)O-H_(2)O)in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater.Results revealed that groundwater in the study area is fresh and hard-very hard water,and mainly a Ca-Mg-Cl type.NO_(3)-concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L.Most of the samples showed concentration higher than the natural background concentration of NO_(3)-(5.0-10.0 mg/L).Theδ^(2)H-H_(2)O andδ^(18)O-H_(2)O values indicated that the groundwater is meteoric,and of Mediterranean origin,with a strong evaporation effect.Theδ^(15)N-NO_(3)-values ranged between 6.0‰and 11.3‰with an average of 8.7‰,and theδ^(18)O-NO_(3)-values ranged between 1.6‰and 5.9‰with an average of 3.4‰.These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure,and soil NH4.Nitrification and denitrification are the main transformation processes affecting nitrogen species.Statistical analysis revealed no significant differences in theδ^(2)H-H_(2)O andδ^(18)OH_(2)O values,andδ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-values for the three aquifers(A1/2,A4,and B2/A7),indicating that the groundwater of these aquifers has the same origin,and a common source of pollution.展开更多
With rapid urban expansion across Tanzania,there is a need to institute steps to address factors and forms as well as impacts and challenges associated with the observed trend.This study’s aim is to use spatial urban...With rapid urban expansion across Tanzania,there is a need to institute steps to address factors and forms as well as impacts and challenges associated with the observed trend.This study’s aim is to use spatial urban landscape indices to analyze the spatial changes in urban forms,patterns,and rates across 11 urban centers in Tanzania over a 30-year study period(1990–2020).During the past three decades,urban lands of 11 cities and town in Tanzania have grown by a total of 480 km2.Leapfrog growth was found as the most dominant form of urban expansion in Tanzania while Dodoma,the capital city of Tanzania,had the highest rate of urban expansion when compared to all other individual cities.The most robust and significant interaction of the AWMLEI and MLEI was found in Kigoma,Arusha,Mtwara,Mafinga,and Tunduma cities.In contrast,Mbeya agricultural city,Arusha the tourist city,Tabora,and Geita Lake zone areas did show their own peculiarities revealing an interesting spatial temporal variation in rate and form of expansion.The outcome of this study reveals that the influence and management of economic and socio-cultural opportunities will be an effective tool for the determination of the rapidly expanding cities and towns of Tanzania.展开更多
The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV), where over 60% of Jordan's agricultural produce is grown, was investigated in this study during 2009-2010. ...The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV), where over 60% of Jordan's agricultural produce is grown, was investigated in this study during 2009-2010. Due to the differences in agricultural operations, cropping patterns, irrigation management, and weather conditions, 206 top- and sub-soil samples were taken every 1 to 3 km from representative farms along a north-south (N-S) transect with 1 to 2 km lateral extents. Soil electrical conductivity of saturated extract (ECse), Ca, Mg, K, Na, CI, and Na adsorption ratio (SAR) were determined in saturated paste extracts. Results indicated that about 63% of soils in the JV are indeed saline, out of which almost 46% are moderately to strongly saline. Along the N-S transect of the JV, ECse increased from 4.5 to 14.1 dS m-1 in top-soil samples. Similar increase was observed for the sub-soil samples. The major chemical components of soil salinity; i.e., Ca, Mg, and C1, also showed a similar increase along the N-S transect of the valley. Moreover, compared to previous field sampling, results showed that changes in soil salinity in the JV were dramatic. In addition, it was found that C1 imposed an existing and potential threat to sensitive crops in 60% of the soils in the JV, where C1 concentrations were greater than 710 mg L-1. Under the prevalent arid Mediterranean conditions, improving the management of .irrigation water, crops, and nutrient inputs and increasing water and fertilizer use efficiencies should be indispensable to conserve and sustain the already fragile agricultural soils in the JV.展开更多
文摘Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.
文摘It is common knowledge that Yarmouk River Basin(YRB)is shared between Jordan and Syria.Management of YRB trans-boundary water resources is attracting increasing interest because it is a strategic water resource for the riparian countries.Actually,lack of sharing information regarding hydrological flows and basin’s water management between partners’countries makes it difficult to distinguish between natural and man-made factors affecting the water body.Therefore,this study seeks to address and assess the main on-site changes that exert on YRB.Geospatial technique and arithmetic equations were combined to carry out an assessment of the changes on water resources in YRB.Data,information and field measurements of the basin were aggregated,compiled and presented to determine the extent of changes during the period 1980-2020.Remarkable findings showed that precipitation amount in the basin significantly declined during the period 1980-2020 in particularly after the year 1992.Pumping rate of groundwater was 550 x 103 m3/a,exceeding the basin’s safe yield.Draw down of static groundwater level over time approached the value of-3.2 m/a due to the over abstraction in the aquifer body.Additionally,the evaporation rate reached more than 99%in some regions in the basin.Moreover,the number of private wells has increased from 98 wells in 1980 to 126 wells in 2020,showing the excessive extraction of groundwater.These findings indicate that the study area is subjected to a considerable groundwater depletion in the near future due to extensive abstraction,continuous drilling of illegal wells and decreased annual precipitation under the shadow of the rapid population growth and continuous influx of refugees.Therefore,decision makers-informed scenarios are suggested in the development of water resource portfolios,which involves the combination of management and infrastructural actions that enhance the water productivity of the basin.Further studies are recommended to evaluate the on-site changes on water resources in YRB in collaboration with riparian countries and to establish monitoring system for continuous and accurate measurements of the basin.
基金funded by the by the Deanship of Scientific Research,Jordan University of Science and Technology(20170338).
文摘Groundwater forms the main freshwater supply in arid and semi-arid areas,and contamination of this precious resource is complicated by the slow rate of recharge in these areas.Nitrate contamination of groundwater is a global water quality problem,as it entails threat to human health as well as aquatic ecosystems.Source identification of contamination is the cornerstone and a prerequisite for any effective management program of water quality.Stable isotope composition of the dissolved nitrate(δ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-)has been applied to identify NO_(3)-sources and the main transformation processes in the upper aquifer system(A1/2,A4,and B2/A7 aquifers)in the Wadi Shueib catchment area,Jordan.Moreover,the stable isotope compositions of the groundwater(δ^(2)H-H_(2)O andδ^(18)O-H_(2)O)in conjunction with the groundwater hydrochemistry were integrated to investigate the origin and evolution of the groundwater.Results revealed that groundwater in the study area is fresh and hard-very hard water,and mainly a Ca-Mg-Cl type.NO_(3)-concentration was in the range of 7.0-74.0 mg/L with an average of 37.0 mg/L.Most of the samples showed concentration higher than the natural background concentration of NO_(3)-(5.0-10.0 mg/L).Theδ^(2)H-H_(2)O andδ^(18)O-H_(2)O values indicated that the groundwater is meteoric,and of Mediterranean origin,with a strong evaporation effect.Theδ^(15)N-NO_(3)-values ranged between 6.0‰and 11.3‰with an average of 8.7‰,and theδ^(18)O-NO_(3)-values ranged between 1.6‰and 5.9‰with an average of 3.4‰.These values are in conformity with the stable isotope composition of nitrate derived the nitrification of wastewater/manure,and soil NH4.Nitrification and denitrification are the main transformation processes affecting nitrogen species.Statistical analysis revealed no significant differences in theδ^(2)H-H_(2)O andδ^(18)OH_(2)O values,andδ^(15)N-NO_(3)-andδ^(18)O-NO_(3)-values for the three aquifers(A1/2,A4,and B2/A7),indicating that the groundwater of these aquifers has the same origin,and a common source of pollution.
基金supported by the Sokoine University of Agriculture Research and Innovation Support(SUARIS)2nd Phase special Grant[2022/2024]the Directorate of Postgraduate Studies,Research,Technology Transfer and Consultancy(DPRTC).
文摘With rapid urban expansion across Tanzania,there is a need to institute steps to address factors and forms as well as impacts and challenges associated with the observed trend.This study’s aim is to use spatial urban landscape indices to analyze the spatial changes in urban forms,patterns,and rates across 11 urban centers in Tanzania over a 30-year study period(1990–2020).During the past three decades,urban lands of 11 cities and town in Tanzania have grown by a total of 480 km2.Leapfrog growth was found as the most dominant form of urban expansion in Tanzania while Dodoma,the capital city of Tanzania,had the highest rate of urban expansion when compared to all other individual cities.The most robust and significant interaction of the AWMLEI and MLEI was found in Kigoma,Arusha,Mtwara,Mafinga,and Tunduma cities.In contrast,Mbeya agricultural city,Arusha the tourist city,Tabora,and Geita Lake zone areas did show their own peculiarities revealing an interesting spatial temporal variation in rate and form of expansion.The outcome of this study reveals that the influence and management of economic and socio-cultural opportunities will be an effective tool for the determination of the rapidly expanding cities and towns of Tanzania.
文摘The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV), where over 60% of Jordan's agricultural produce is grown, was investigated in this study during 2009-2010. Due to the differences in agricultural operations, cropping patterns, irrigation management, and weather conditions, 206 top- and sub-soil samples were taken every 1 to 3 km from representative farms along a north-south (N-S) transect with 1 to 2 km lateral extents. Soil electrical conductivity of saturated extract (ECse), Ca, Mg, K, Na, CI, and Na adsorption ratio (SAR) were determined in saturated paste extracts. Results indicated that about 63% of soils in the JV are indeed saline, out of which almost 46% are moderately to strongly saline. Along the N-S transect of the JV, ECse increased from 4.5 to 14.1 dS m-1 in top-soil samples. Similar increase was observed for the sub-soil samples. The major chemical components of soil salinity; i.e., Ca, Mg, and C1, also showed a similar increase along the N-S transect of the valley. Moreover, compared to previous field sampling, results showed that changes in soil salinity in the JV were dramatic. In addition, it was found that C1 imposed an existing and potential threat to sensitive crops in 60% of the soils in the JV, where C1 concentrations were greater than 710 mg L-1. Under the prevalent arid Mediterranean conditions, improving the management of .irrigation water, crops, and nutrient inputs and increasing water and fertilizer use efficiencies should be indispensable to conserve and sustain the already fragile agricultural soils in the JV.