One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML...One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures.展开更多
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl...The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.展开更多
Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence m...Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence may also aggravate flooding problems in this area.Therefore,accurate predictions of water levels in this region are very important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses of life and property.There are so many methods available to predict the water levels based on historical data but nowadays Machine Learning(ML)methods are considered the best tool for accurate prediction.In this study,we have used surface water level data of 18 water level measurement stations of the Mekong River delta from 2000 to 2018 to build novel time-series Bagging based hybrid ML models namely:Bagging(RF),Bagging(SOM)and Bagging(M5P)to predict historical water levels in the study area.Performances of the Bagging-based hybrid models were compared with Reduced Error Pruning Trees(REPT),which is a benchmark ML model.The data of 19 years period was divided into 70:30 ratio for the modeling.The data of the period 1/2000 to 5/2013(which is about 70%of total data)was used for the training and for the period 5/2013 to 12/2018(which is about 30%of total data)was used for testing(validating)the models.Performance of the models was evaluated using standard statistical measures:Coefficient of Determination(R2),Root Mean Square Error(RMSE)and Mean Absolute Error(MAE).Results show that the performance of all the developed models is good(R2>0.9)for the prediction of water levels in the study area.However,the Bagging-based hybrid models are slightly better than another model such as REPT.Thus,these Bagging-based hybrid time series models can be used for predicting water levels at Mekong data.展开更多
基金Ministry of Education and Training of Vietnam,Grant No.B2020-GHA-03the University of Transport and Communications,Hanoi,Vietnam.
文摘One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 105.08-2019.03.
文摘The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.
基金funded by Vietnam Academy of Science and Technology(VAST)under Project Codes KHCBTÐ.02/19-21 and UQÐTCB.02/19-20.
文摘Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence may also aggravate flooding problems in this area.Therefore,accurate predictions of water levels in this region are very important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses of life and property.There are so many methods available to predict the water levels based on historical data but nowadays Machine Learning(ML)methods are considered the best tool for accurate prediction.In this study,we have used surface water level data of 18 water level measurement stations of the Mekong River delta from 2000 to 2018 to build novel time-series Bagging based hybrid ML models namely:Bagging(RF),Bagging(SOM)and Bagging(M5P)to predict historical water levels in the study area.Performances of the Bagging-based hybrid models were compared with Reduced Error Pruning Trees(REPT),which is a benchmark ML model.The data of 19 years period was divided into 70:30 ratio for the modeling.The data of the period 1/2000 to 5/2013(which is about 70%of total data)was used for the training and for the period 5/2013 to 12/2018(which is about 30%of total data)was used for testing(validating)the models.Performance of the models was evaluated using standard statistical measures:Coefficient of Determination(R2),Root Mean Square Error(RMSE)and Mean Absolute Error(MAE).Results show that the performance of all the developed models is good(R2>0.9)for the prediction of water levels in the study area.However,the Bagging-based hybrid models are slightly better than another model such as REPT.Thus,these Bagging-based hybrid time series models can be used for predicting water levels at Mekong data.