Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an...Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).展开更多
The thermomechanical behavior and the distribution of residual stresses due to thermal spraying of NiCoCrAlY coating were studied by thermomechanical finite element analysis. The effects of phase transformation due to...The thermomechanical behavior and the distribution of residual stresses due to thermal spraying of NiCoCrAlY coating were studied by thermomechanical finite element analysis. The effects of phase transformation due to solidifying process of coating particles, thickness and material properties of coating on the residual stresses were discussed. Results showed that residual stress decreases little with the stress relaxation due to the phase transformation. For the substrates with the same thickness, the residual stress increases with the increase in coating thickness. The state of residual stresses relates to the material properties of coating and substrate closely. The stress-induced failure model of coating is also discussed.展开更多
Kinematics and its related issues of a 3-DOF in-parallel compliant mechanismare focused on. The micro manipulation application that requires high accuracy is developed. Designof the developed micromanipulator is based...Kinematics and its related issues of a 3-DOF in-parallel compliant mechanismare focused on. The micro manipulation application that requires high accuracy is developed. Designof the developed micromanipulator is based on the modified Delta mechanism. The main advantages ofthis manipulator are the use of only revolute flexure hinges and the capability to produce puretranslation theoretically. The aim is to develop an efficient kinematic model used for positioningcontrol. For this purpose, the Jacobian matrix relating the end effector position with the actuatordisplacements is obtained by both theoretical derivation and experiment. Aiming at the abnormalityin the motion capabilities of the micromanipulator found in calibration experiment, the mobility ofthe compliant mechanism on a theoretical level is analyzed by using the matrix method and screwtheory. Both the experimental and theoretical results have verified that the compliant mechanismdoes have rotational motion.展开更多
The 2D digital simplified flow valve is composed of a pilot-operated valvedesigned with both rotary and linear motions of a single spool, and a stepper motor under continualcontrol. How the structural parameters affec...The 2D digital simplified flow valve is composed of a pilot-operated valvedesigned with both rotary and linear motions of a single spool, and a stepper motor under continualcontrol. How the structural parameters affect the static and dynamic characteristics of the valve isfirst clarified and a criterion for stability is presented. Experiments are designed to test theperformance of the valve. It is necessary to establish a balance between the static and dynamiccharacteristics in deciding the structural parameters. Nevertheless, it is possible to maintain thedynamic response at a fairly high level, while keeping the leakage of the pilot stage at anacceptable level. One of the features of the digital valve is stage control. In stage control thenonlinearities, such as electromagnetic saturation and hysteresis, are greatly reduced. To a largeextent the dynamic response of the valve is decided by the executing cycle of the control algorithm.展开更多
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is l...3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.展开更多
Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profil...Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.展开更多
Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and...Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.展开更多
Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning e...Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.展开更多
A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a ...A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening,is utilized as pilot to actuate linear motion of the spool. A criterion for stability is derivedfrom the linear analysis of the valve. Special experiments are designed to acquire the mechanicalstiffness, the pilot leakage and the step response. It is shown that the sectional size of thespiral groove affects the dynamic response and the stiffness contradictorily and is also verysensitive to the pilot leakage. Therefore, it is necessary to establish a balance between the staticand dynamic characteristics in deciding the structural parameters. Nevertheless, it is possible tosustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage atan acceptable level.展开更多
文摘Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).
基金The authors are grateful to the support provided by the National Natural Science Foundation of China(Contract No.10172046)Science and Technology Project of China Petro-chemical Co.(Contract No.02JSNJYZ101001).
文摘The thermomechanical behavior and the distribution of residual stresses due to thermal spraying of NiCoCrAlY coating were studied by thermomechanical finite element analysis. The effects of phase transformation due to solidifying process of coating particles, thickness and material properties of coating on the residual stresses were discussed. Results showed that residual stress decreases little with the stress relaxation due to the phase transformation. For the substrates with the same thickness, the residual stress increases with the increase in coating thickness. The state of residual stresses relates to the material properties of coating and substrate closely. The stress-induced failure model of coating is also discussed.
基金This project is supported by National Natural Science Foundation of China (No.59775002 and No.50075010).
文摘Kinematics and its related issues of a 3-DOF in-parallel compliant mechanismare focused on. The micro manipulation application that requires high accuracy is developed. Designof the developed micromanipulator is based on the modified Delta mechanism. The main advantages ofthis manipulator are the use of only revolute flexure hinges and the capability to produce puretranslation theoretically. The aim is to develop an efficient kinematic model used for positioningcontrol. For this purpose, the Jacobian matrix relating the end effector position with the actuatordisplacements is obtained by both theoretical derivation and experiment. Aiming at the abnormalityin the motion capabilities of the micromanipulator found in calibration experiment, the mobility ofthe compliant mechanism on a theoretical level is analyzed by using the matrix method and screwtheory. Both the experimental and theoretical results have verified that the compliant mechanismdoes have rotational motion.
基金This project is supported by National Natural Science Foundation of China (No.50075082).
文摘The 2D digital simplified flow valve is composed of a pilot-operated valvedesigned with both rotary and linear motions of a single spool, and a stepper motor under continualcontrol. How the structural parameters affect the static and dynamic characteristics of the valve isfirst clarified and a criterion for stability is presented. Experiments are designed to test theperformance of the valve. It is necessary to establish a balance between the static and dynamiccharacteristics in deciding the structural parameters. Nevertheless, it is possible to maintain thedynamic response at a fairly high level, while keeping the leakage of the pilot stage at anacceptable level. One of the features of the digital valve is stage control. In stage control thenonlinearities, such as electromagnetic saturation and hysteresis, are greatly reduced. To a largeextent the dynamic response of the valve is decided by the executing cycle of the control algorithm.
基金This work was supported by the‘973'ScienceTechnology Development Plan of the National Basic Research Foundation(No.1998061500)the 985'Foundation of Tsinghua University.
文摘3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.
文摘Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.
文摘Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.
基金the National Natural Science Foundatlon of China under grant No.50172004,50273002 ,50333070.
文摘Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.
基金This project is supported by National Natural Science Foundation of China (No.50075082)
文摘A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening,is utilized as pilot to actuate linear motion of the spool. A criterion for stability is derivedfrom the linear analysis of the valve. Special experiments are designed to acquire the mechanicalstiffness, the pilot leakage and the step response. It is shown that the sectional size of thespiral groove affects the dynamic response and the stiffness contradictorily and is also verysensitive to the pilot leakage. Therefore, it is necessary to establish a balance between the staticand dynamic characteristics in deciding the structural parameters. Nevertheless, it is possible tosustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage atan acceptable level.