The creep behavior of Al2O3.SiO2 fiber reinforced ZL109 composites has been investigated at four temperatures ranging from 553 to 623 K. The results show high stress exponent and high apparent creep activation energy....The creep behavior of Al2O3.SiO2 fiber reinforced ZL109 composites has been investigated at four temperatures ranging from 553 to 623 K. The results show high stress exponent and high apparent creep activation energy. A good correlation between the normalized creep rate and normalized effective stress means that the true stress exponent of minimum creep strain rate of the composite is very close to 5, and the minimum creep strain rate is matrix lattice diffusion controlled. The threshold stress decreases with increasing temperature linearly and disappears at a temperature close to 623 K. It is assumed that the long range internal back stresses generated in creep reduce the load transfer to fibers and the interaction between dislocations and strengthening precipitates decreases at high temperature. At a high temperature where the long range internal back stresses is very close to the applied stress, the threshold stress disappears.展开更多
The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃ and the strain rate range from 0.01 to l0...The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃ and the strain rate range from 0.01 to l0.0s-1.The tensile fracture behavior of the 1420 Al-Li alloy at high temperature was studied experimently. The results show that the tensile fracture mode of the 1420 Al-Li alloy at high temperature is changed from typical transgranular ductile fracture to intergranular brittle fracture with the increase of the deformation temperature and the strain rate. It is made out that the precipitation of LiH is the fundamental reason for the intergranular brittle fracture of the 1420 Al-Li alloy at high temperature. The mechanism of hydrogen embrittlement of the 1420 Al-Li alloy at high temperature was discussed, and it was proposed that the hydrogen embrittlement at high temperature is an integrated function of the dynamic and the static force, which enrichs the theories of hydrogen embrittlemen t.展开更多
文摘The creep behavior of Al2O3.SiO2 fiber reinforced ZL109 composites has been investigated at four temperatures ranging from 553 to 623 K. The results show high stress exponent and high apparent creep activation energy. A good correlation between the normalized creep rate and normalized effective stress means that the true stress exponent of minimum creep strain rate of the composite is very close to 5, and the minimum creep strain rate is matrix lattice diffusion controlled. The threshold stress decreases with increasing temperature linearly and disappears at a temperature close to 623 K. It is assumed that the long range internal back stresses generated in creep reduce the load transfer to fibers and the interaction between dislocations and strengthening precipitates decreases at high temperature. At a high temperature where the long range internal back stresses is very close to the applied stress, the threshold stress disappears.
文摘The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃ and the strain rate range from 0.01 to l0.0s-1.The tensile fracture behavior of the 1420 Al-Li alloy at high temperature was studied experimently. The results show that the tensile fracture mode of the 1420 Al-Li alloy at high temperature is changed from typical transgranular ductile fracture to intergranular brittle fracture with the increase of the deformation temperature and the strain rate. It is made out that the precipitation of LiH is the fundamental reason for the intergranular brittle fracture of the 1420 Al-Li alloy at high temperature. The mechanism of hydrogen embrittlement of the 1420 Al-Li alloy at high temperature was discussed, and it was proposed that the hydrogen embrittlement at high temperature is an integrated function of the dynamic and the static force, which enrichs the theories of hydrogen embrittlemen t.