Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o...Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.展开更多
Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene a...Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene and 2-4 genes: IRBB1 (Xa1), IRBB2 (Xa2), IRBB3 (Xa3), IRBB4 (Xa4), IRBB5 (xa5), IRBB7 (Xa7), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13), IRBB14 (Xa14), IRBB21 (Xa21), IR24 (Xa18), IRBB50 (Xa4 + xa5), IRBB51 (Xa4 + xa13), IRBB52 (Xa4 + Xa21), IRBB53 (xa5 + xa13), IRBB54 (xa5 + Xa21), IRBB55 (xa13 + Xa21), IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), IRBB59 (xa5 + xa13 + Xa21) and IRBB60 (Xa4 + xa5 + xa13 + Xa21). The results showed that most isolates were less virulent on lines with more than one genes pyramided than those with single resistance gene. The isolates tested were more virulent on IR24 and IRBB10, less virulent on IRBB5, IRBB7 and IRBB21. Based on interactions between isolates and rice near-isogenic lines, 7 cultivars with single gene (IRBB5, IRBB4, IRBB3, IRBB14, IRBB2, IRBB1 and IR24) were chosen as the differentials, and the tested isolates were classified into 7 virulence groups. The reaction patterns of the 7 groups in order were: RRRRRRR, RRRRRRS, RRRRRSS, RR/SRRSSS, RRRSSSS, RRSSSSS, RSSSSSS. The virulence frequencies were 7.69, 6.59, 14.29, 12.09, 14.29, 28.57 and 16.48% respectively. The elementary system for races identification has been established in China based on the results. It will be possible to compare with races in other countries, and the results will facilitate the development of rice resistance breeding to bacterial blight in China.展开更多
Low phosphorus (P) availability is one of the most important factors limiting plant growth in red soils across southeastern China. Many non\|symbiotic microorganisms in rhizosphere can enhance P solubility, but little...Low phosphorus (P) availability is one of the most important factors limiting plant growth in red soils across southeastern China. Many non\|symbiotic microorganisms in rhizosphere can enhance P solubility, but little is known about the magnitude of their phosphorus\|solubilizing ability (PSA) and the difference in phosphorus\|solubilizing microorganisms (PSM) among plant species. The number of phosphorus\|solubilizing microorganisms and their PSA in rhizosphere soils of 19 weed species in a citrus orchard on red soil at Changshan, Zhejiang, China, were investigated. Inorganic P (powdered phosphate rock, PR) and organic P (lecithin, OP) were respectively used as the sole P\|source to examine the PSA of isolated microbes. The PS actinomycetes community varied greatly among the different weed rhizospheres while the PS fungus community showed to be most stable to the weed rhizosphere. The highest number of PR\|PS and OP\|PS bacteria was found in rhizosphere soil of \%Mollugo pentaphyll\%, and the highest number of PR\|PS and OP\|PS actinomycetes was found in rhizosphere soil of \%Polygonum lapathifolium\%. The highest number of PR\|PS fungi was found in \%Erigeron annuus\% and \%Mollugo pentaphyll\% rhizosphere soil, and the highest number of OP\|PS fungi was found in rhizosphere soil of \%Mazus stachydifolius\%. \%Mazus stachydifolius\% showed the strongest PR\|PS ability (6340.75μg) while \%Eragrostis pilosa\% showed the strongest OP\|PS ability (1301.84μg). The PR\|PS ability and OP\|PS ability of \%Mollugo pentaphyll\% was 4432.87μg and 1122.05μg respectively. A significant correlation between the number of PR\|PSM and OP\|PSM was found. Significant correlation was only found between the PR\|PS fungi number and its PSA( r =0.75, P <0.05) and between the number of OP\|PS fungi and its PSA( r =0.87, P <0.01}). It indicated that plant species had significant influence on components of the non\|symbiotic PSM community and their activity in its rhizosphere soil. Fungi play a leading role in phosphorus solubilization in weed rhizopshere. It suggested that weed conservation could benefit soil microbe development in agroecosystems, especially in the initial stage of agroecosystem development because there is less organic carbon in bare soil. The results suggested that weed conservation could increase PSA of PSM.展开更多
The health status of 18 sweet corn (Zea mays L. saccharata Sturt) hybrids classified to two types, collected from five areas in China, was examined by PDA method, and factors influencing seed health and relationships ...The health status of 18 sweet corn (Zea mays L. saccharata Sturt) hybrids classified to two types, collected from five areas in China, was examined by PDA method, and factors influencing seed health and relationships between seed health and field seedling emergence were studied. Seventeen fungal genera were isolated and Fusarium was the most frequently isolated. There were significant differences both in incidence of Fusarium and in percentage of infected seeds among 18 hybrids. Research also showed that significant and consistent differences both in seed-borne fungal taxa and in percentage of infected seeds existed between two types of sweet corn. Sugar enhanced corn is more slightly infected than super sweet corn both in fungal taxa (13 and 16, respectively) and in percentage of infected seeds (62.0 and 79.2%, respectively). There were also significant differences both in seed-borne fungal taxa and in percentage of infected seeds among five areas. Seeds from South China were most severely infected, for there were 14 fungal genera detected and the percentage of infected seeds was highly 99.1% while those from Northwest China were slightly infected, for there were 10 fungal genera detected and the percentage of infected seeds was only 14.3%. Further research showed that there were significant negative correlations both between incidence of Fusarium and percentage of field seedling emergence and between percentage of infected seeds and percentage of field seedling emergence. Percentage of field seedling emergence could be estimated by regression equations built by regression analysis.展开更多
Genetic resistance is the most economical method of reducing yield losses caused by wheat leaf rust. To identify the leaf rust resistance genes in commonly used parental germplasm and released cultivars become very ...Genetic resistance is the most economical method of reducing yield losses caused by wheat leaf rust. To identify the leaf rust resistance genes in commonly used parental germplasm and released cultivars become very important for utilizing the genetic resistance to wheat leaf rust fully. Up to date, about 90 leaf rust resistance genes have been found, of which 51 genes have been located and mapped to special chromosomes, and 56 genes have been designated officially according to the standards set forth in the Catalogue of Gene Symbols for wheat. Twenty-four wheat leaf rust resistance genes have been developed for their molecular markers. It is very important to isolate, characterize, and map leaf rust resistance genes due to the resistance losses of the genes caused by the pathogen continuously.展开更多
WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cD...WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cDNA library. The deduced polypeptide contains 263 amino acid residues with a potential leucine zipper structure in its N-terminus, sharing low identity with other known WRKY members. OsWRKY89 and three deletion derivatives from its N-terminal were expressed in high levels in Escherichia coli as a C-terminally six-histidine-tagged fusion protein, and purified by employing one-step affinity chromatography on a Ni-NTA column. The recombinant OsWRKY89 protein was found to bind specially to sequences harboring W box cis elements by using electrophoretic mobility shift assays. This binding activity was decreased significantly by deletion of the leucine zipper-like structure in the N-terminal of Os- WRKY89. Using a yeast two-hybrid assay system, we found that the leucine zipper motif of OsWRKY89 was involved in the protein-protein interaction. Further deletion to remove partial WRKY domain abolished completely the interaction between the expressed protein and the W boxes, indicating that the WRKY domain is essential to the DNA-binding. These data strongly suggest that the leucine zipper-like motif of OsWRKY89 plays a significant role in the protein-protein and DNA-protein interactions.展开更多
Antibiotic 2,4-diacetylphloroglucinol (2,4- DAPG) produced by Pseudomonas fluorescens CPF-10 and 2P24 is a principal factor enabling bacteria to suppress plant diseases caused by soilborne pathogens. In this study, a ...Antibiotic 2,4-diacetylphloroglucinol (2,4- DAPG) produced by Pseudomonas fluorescens CPF-10 and 2P24 is a principal factor enabling bacteria to suppress plant diseases caused by soilborne pathogens. In this study, a 2,4-DAPG biosynthesis locus phlACBDE cloned from strain CPF-10 was assembled into a mini-Tn5 transposon and in- troduced into the chromosome of P. fluorescens P32 (2,4- DAPG?), CPF-10 and 2P24 to construct the 2,4-DAPG over- producing derivatives P32-38, CPF10-9 and 2P24-48, respec- tively. All the transgenic strains showed an enhanced anti- biosis capacity against plant microbial pathogens in vitro and two strains, P32-38 and CPF10-9, provided significantly bet- ter protection against wheat take-all disease caused by Gae- umannomyces graminis var. tritici and tomato bacterial wilt caused by Ralstonia solanacearum in greenhouse. Compared to their parental strains, the 2,4-DAPG overproducing de- rivatives colonized to the same extent on the wheat tips in the autoclaved soil, but developed larger populations in natural soil. These results indicated that production of antibiotics 2,4- DAPG by biological control pseudomonads can contribute not only to their disease suppression capacities but also to the ecological competence in the resident microflora. Our re- search also suggests that it is a realistic approach to improve biocontrol capacity of P. fluorescens through the genetic modification of its antibiotic 2,4-DAPG production.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40231016) the National Science Foundation of America (No. DEB-00-01686).
文摘Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.
基金This study was supported by the National Natural Science Foundation of China(30070497)National 863 Program of China(2002AA245041).
文摘Ninety one isolates of Xanthomonas oryzae pv. oryzae were collected from different rice- growing regions in China and determined for their virulence on 24 rice near-isogenic lines containing single resistance gene and 2-4 genes: IRBB1 (Xa1), IRBB2 (Xa2), IRBB3 (Xa3), IRBB4 (Xa4), IRBB5 (xa5), IRBB7 (Xa7), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13), IRBB14 (Xa14), IRBB21 (Xa21), IR24 (Xa18), IRBB50 (Xa4 + xa5), IRBB51 (Xa4 + xa13), IRBB52 (Xa4 + Xa21), IRBB53 (xa5 + xa13), IRBB54 (xa5 + Xa21), IRBB55 (xa13 + Xa21), IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), IRBB59 (xa5 + xa13 + Xa21) and IRBB60 (Xa4 + xa5 + xa13 + Xa21). The results showed that most isolates were less virulent on lines with more than one genes pyramided than those with single resistance gene. The isolates tested were more virulent on IR24 and IRBB10, less virulent on IRBB5, IRBB7 and IRBB21. Based on interactions between isolates and rice near-isogenic lines, 7 cultivars with single gene (IRBB5, IRBB4, IRBB3, IRBB14, IRBB2, IRBB1 and IR24) were chosen as the differentials, and the tested isolates were classified into 7 virulence groups. The reaction patterns of the 7 groups in order were: RRRRRRR, RRRRRRS, RRRRRSS, RR/SRRSSS, RRRSSSS, RRSSSSS, RSSSSSS. The virulence frequencies were 7.69, 6.59, 14.29, 12.09, 14.29, 28.57 and 16.48% respectively. The elementary system for races identification has been established in China based on the results. It will be possible to compare with races in other countries, and the results will facilitate the development of rice resistance breeding to bacterial blight in China.
文摘Low phosphorus (P) availability is one of the most important factors limiting plant growth in red soils across southeastern China. Many non\|symbiotic microorganisms in rhizosphere can enhance P solubility, but little is known about the magnitude of their phosphorus\|solubilizing ability (PSA) and the difference in phosphorus\|solubilizing microorganisms (PSM) among plant species. The number of phosphorus\|solubilizing microorganisms and their PSA in rhizosphere soils of 19 weed species in a citrus orchard on red soil at Changshan, Zhejiang, China, were investigated. Inorganic P (powdered phosphate rock, PR) and organic P (lecithin, OP) were respectively used as the sole P\|source to examine the PSA of isolated microbes. The PS actinomycetes community varied greatly among the different weed rhizospheres while the PS fungus community showed to be most stable to the weed rhizosphere. The highest number of PR\|PS and OP\|PS bacteria was found in rhizosphere soil of \%Mollugo pentaphyll\%, and the highest number of PR\|PS and OP\|PS actinomycetes was found in rhizosphere soil of \%Polygonum lapathifolium\%. The highest number of PR\|PS fungi was found in \%Erigeron annuus\% and \%Mollugo pentaphyll\% rhizosphere soil, and the highest number of OP\|PS fungi was found in rhizosphere soil of \%Mazus stachydifolius\%. \%Mazus stachydifolius\% showed the strongest PR\|PS ability (6340.75μg) while \%Eragrostis pilosa\% showed the strongest OP\|PS ability (1301.84μg). The PR\|PS ability and OP\|PS ability of \%Mollugo pentaphyll\% was 4432.87μg and 1122.05μg respectively. A significant correlation between the number of PR\|PSM and OP\|PSM was found. Significant correlation was only found between the PR\|PS fungi number and its PSA( r =0.75, P <0.05) and between the number of OP\|PS fungi and its PSA( r =0.87, P <0.01}). It indicated that plant species had significant influence on components of the non\|symbiotic PSM community and their activity in its rhizosphere soil. Fungi play a leading role in phosphorus solubilization in weed rhizopshere. It suggested that weed conservation could benefit soil microbe development in agroecosystems, especially in the initial stage of agroecosystem development because there is less organic carbon in bare soil. The results suggested that weed conservation could increase PSA of PSM.
文摘The health status of 18 sweet corn (Zea mays L. saccharata Sturt) hybrids classified to two types, collected from five areas in China, was examined by PDA method, and factors influencing seed health and relationships between seed health and field seedling emergence were studied. Seventeen fungal genera were isolated and Fusarium was the most frequently isolated. There were significant differences both in incidence of Fusarium and in percentage of infected seeds among 18 hybrids. Research also showed that significant and consistent differences both in seed-borne fungal taxa and in percentage of infected seeds existed between two types of sweet corn. Sugar enhanced corn is more slightly infected than super sweet corn both in fungal taxa (13 and 16, respectively) and in percentage of infected seeds (62.0 and 79.2%, respectively). There were also significant differences both in seed-borne fungal taxa and in percentage of infected seeds among five areas. Seeds from South China were most severely infected, for there were 14 fungal genera detected and the percentage of infected seeds was highly 99.1% while those from Northwest China were slightly infected, for there were 10 fungal genera detected and the percentage of infected seeds was only 14.3%. Further research showed that there were significant negative correlations both between incidence of Fusarium and percentage of field seedling emergence and between percentage of infected seeds and percentage of field seedling emergence. Percentage of field seedling emergence could be estimated by regression equations built by regression analysis.
基金This study was supported by the National Natural Science Foundation of China(30170602)the Biological Control Center of Plant Pathogens and Plant Pests of Hebei Province.
文摘Genetic resistance is the most economical method of reducing yield losses caused by wheat leaf rust. To identify the leaf rust resistance genes in commonly used parental germplasm and released cultivars become very important for utilizing the genetic resistance to wheat leaf rust fully. Up to date, about 90 leaf rust resistance genes have been found, of which 51 genes have been located and mapped to special chromosomes, and 56 genes have been designated officially according to the standards set forth in the Catalogue of Gene Symbols for wheat. Twenty-four wheat leaf rust resistance genes have been developed for their molecular markers. It is very important to isolate, characterize, and map leaf rust resistance genes due to the resistance losses of the genes caused by the pathogen continuously.
基金This work was supported by the State Basic Research and Development Plan(G200001 6203)the National Natural Science Foundation of China(Grant Nos.30370139&30471122).
文摘WRKY proteins are transcriptional regulators involved in plant responses to biotic and abiotic stresses, metabolisms, and developmental processes. In the present study, we isolated a WRKY cDNA, OsWRKY89 from a rice cDNA library. The deduced polypeptide contains 263 amino acid residues with a potential leucine zipper structure in its N-terminus, sharing low identity with other known WRKY members. OsWRKY89 and three deletion derivatives from its N-terminal were expressed in high levels in Escherichia coli as a C-terminally six-histidine-tagged fusion protein, and purified by employing one-step affinity chromatography on a Ni-NTA column. The recombinant OsWRKY89 protein was found to bind specially to sequences harboring W box cis elements by using electrophoretic mobility shift assays. This binding activity was decreased significantly by deletion of the leucine zipper-like structure in the N-terminal of Os- WRKY89. Using a yeast two-hybrid assay system, we found that the leucine zipper motif of OsWRKY89 was involved in the protein-protein interaction. Further deletion to remove partial WRKY domain abolished completely the interaction between the expressed protein and the W boxes, indicating that the WRKY domain is essential to the DNA-binding. These data strongly suggest that the leucine zipper-like motif of OsWRKY89 plays a significant role in the protein-protein and DNA-protein interactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.30100120&30370952)the Chinese National Programs for High Technology Research and Development(Grant No.2003AA241170)Inner-Mongolia Natural Science Foundation(Grant No.200408020306).
文摘Antibiotic 2,4-diacetylphloroglucinol (2,4- DAPG) produced by Pseudomonas fluorescens CPF-10 and 2P24 is a principal factor enabling bacteria to suppress plant diseases caused by soilborne pathogens. In this study, a 2,4-DAPG biosynthesis locus phlACBDE cloned from strain CPF-10 was assembled into a mini-Tn5 transposon and in- troduced into the chromosome of P. fluorescens P32 (2,4- DAPG?), CPF-10 and 2P24 to construct the 2,4-DAPG over- producing derivatives P32-38, CPF10-9 and 2P24-48, respec- tively. All the transgenic strains showed an enhanced anti- biosis capacity against plant microbial pathogens in vitro and two strains, P32-38 and CPF10-9, provided significantly bet- ter protection against wheat take-all disease caused by Gae- umannomyces graminis var. tritici and tomato bacterial wilt caused by Ralstonia solanacearum in greenhouse. Compared to their parental strains, the 2,4-DAPG overproducing de- rivatives colonized to the same extent on the wheat tips in the autoclaved soil, but developed larger populations in natural soil. These results indicated that production of antibiotics 2,4- DAPG by biological control pseudomonads can contribute not only to their disease suppression capacities but also to the ecological competence in the resident microflora. Our re- search also suggests that it is a realistic approach to improve biocontrol capacity of P. fluorescens through the genetic modification of its antibiotic 2,4-DAPG production.