Soil erosion is one of the most important problems in the Loess Plateau of China affectingsustainable agriculture. Near Luoyang (Henan Province, China), field plots were constructed tomeasure soil erosion rates under ...Soil erosion is one of the most important problems in the Loess Plateau of China affectingsustainable agriculture. Near Luoyang (Henan Province, China), field plots were constructed tomeasure soil erosion rates under conventional tillage practices using field-simulated rainfall.Field rainfall experiments were carried out to compare previous results from laboratoryrainfall simulations on the same soil for interrill conditions. Although in the laboratoryexperiments, a strong correlation was found between the stream power of the runoff water andthe unit sediment load, this sediment transport equation overestimated the field rainfallsimulation results. Another sediment transport equation derived by Nearing et al. for rillerosion was in better agreement with the results of the field experiments, although it alsooverestimated these values. The measured sediment load values during the field rainfallsimulations were also lower than those found during field experiments on the same soil but witha loosened surface layer. This difference indicates the importance of soil physical conditionof surfce like soil structure and aggregate size, which may contribute to the discrepancybetween the field and laboratory experiment results.展开更多
文摘Soil erosion is one of the most important problems in the Loess Plateau of China affectingsustainable agriculture. Near Luoyang (Henan Province, China), field plots were constructed tomeasure soil erosion rates under conventional tillage practices using field-simulated rainfall.Field rainfall experiments were carried out to compare previous results from laboratoryrainfall simulations on the same soil for interrill conditions. Although in the laboratoryexperiments, a strong correlation was found between the stream power of the runoff water andthe unit sediment load, this sediment transport equation overestimated the field rainfallsimulation results. Another sediment transport equation derived by Nearing et al. for rillerosion was in better agreement with the results of the field experiments, although it alsooverestimated these values. The measured sediment load values during the field rainfallsimulations were also lower than those found during field experiments on the same soil but witha loosened surface layer. This difference indicates the importance of soil physical conditionof surfce like soil structure and aggregate size, which may contribute to the discrepancybetween the field and laboratory experiment results.