Cell-matrix interaction is the key for understanding the cell behaviors,especially the mechanosensitivity of cell adhesion,cell migration and differentiation,etc.Cells are constantly probing,pushing and pulling on the...Cell-matrix interaction is the key for understanding the cell behaviors,especially the mechanosensitivity of cell adhesion,cell migration and differentiation,etc.Cells are constantly probing,pushing and pulling on the surrounding extracellular matrix.These cell-generated forces drive cell migration and tissue morphogenesis,and maintain the intrinsic mechanical tone of tissues.Therefore,knowledge of the spatial and temporal nature of these forces are essential to understanding when and where mechanical events come to play in both physiological and pathological settings.However,because of the complexity of cell geometry and insufficient展开更多
Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they ...Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.展开更多
Various methods have been developed to fabricate highly stretchable electronics. Recent studies show that over 100% two dimensional stretchability can be achieved by mesh structure of brittle functioning devices inter...Various methods have been developed to fabricate highly stretchable electronics. Recent studies show that over 100% two dimensional stretchability can be achieved by mesh structure of brittle functioning devices interconnected with serpentine bridges. Kim et al show that pressing down an inflated elastomeric thin film during transfer printing introduces two di- mensional prestrain, and therefore further improves the system stretchability. This paper gives a theoretical study of this process, through both analytical and numerical approaches. Simple analytical solutions are obtained for meridional and circumferential strains in the thin film, as well as the maximum strain in device islands, which all agree reasonably well with finite element analysis.展开更多
基金supported by the National Natural Science Foundation of China through grant nos.11221202 and 11025208
文摘Cell-matrix interaction is the key for understanding the cell behaviors,especially the mechanosensitivity of cell adhesion,cell migration and differentiation,etc.Cells are constantly probing,pushing and pulling on the surrounding extracellular matrix.These cell-generated forces drive cell migration and tissue morphogenesis,and maintain the intrinsic mechanical tone of tissues.Therefore,knowledge of the spatial and temporal nature of these forces are essential to understanding when and where mechanical events come to play in both physiological and pathological settings.However,because of the complexity of cell geometry and insufficient
基金supported by NSF(DMI-0328162 and ECCS-0824129)the National Natural Science Foundation of China (10820101048)Ministry of Education of China,and the National Basic Research Program of China(2007CB936803).
文摘Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film.
基金Project supported by the NSF (Nos.DMI-0328162 and ECCS-0824129)the support from NSFCthe support from China Scholarship Council
文摘Various methods have been developed to fabricate highly stretchable electronics. Recent studies show that over 100% two dimensional stretchability can be achieved by mesh structure of brittle functioning devices interconnected with serpentine bridges. Kim et al show that pressing down an inflated elastomeric thin film during transfer printing introduces two di- mensional prestrain, and therefore further improves the system stretchability. This paper gives a theoretical study of this process, through both analytical and numerical approaches. Simple analytical solutions are obtained for meridional and circumferential strains in the thin film, as well as the maximum strain in device islands, which all agree reasonably well with finite element analysis.