Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to en...Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.展开更多
The device-to-device(D2D)networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network,forming a heterogeneous 5G and beyond(B5G)communication netwo...The device-to-device(D2D)networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network,forming a heterogeneous 5G and beyond(B5G)communication network.D2D communication in a cellular cell will boost the efficiency of the spectrum,increase the ability of the device,and reduce the communication burden of base stations through the sharing of approved cell resources,causing serious interference as well.The device-to-device(D2D)networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network,forming a heterogeneous 5G communication network.D2D communication in a cellular cell will boost the efficiency of the spectrum,increase the ability of the device,and reduce the communication burden of base stations through the sharing of approved cell resources,causing serious interference as well.This paper proposes an efficient algorithm to minimize interference,based on the parity of the number of antennas,to resolve this issue.The primary concept is to generate the cellular connection precoding matrix by minimizing the power of interference from the base station to non-targeted receivers.Then through the criterion of maximum SINR,the interference suppression matrix of the cellular connection is obtained.Finally,by removing intra-interference through linear interference alignment,the maximum degree of freedom is obtained.The results of the simulation show that the proposed algorithm efficiently increases the performance of the spectrum,decreases interference,improves the degrees of freedom and energy efficiency compared to current algorithms.展开更多
The Internet of Things(IoT)is the fourth technological revolution in the global information industry after computers,the Internet,and mobile communication networks.It combines radio-frequency identification devices,in...The Internet of Things(IoT)is the fourth technological revolution in the global information industry after computers,the Internet,and mobile communication networks.It combines radio-frequency identification devices,infrared sensors,global positioning systems,and various other technologies.Information sensing equipment is connected via the Internet,thus forming a vast network.When these physical devices are connected to the Internet,the user terminal can be extended and expanded to exchange information,communicate with anything,and carry out identification,positioning,tracking,monitoring,and triggering of corresponding events on each device in the network.In real life,the IoT has a wide range of applications,covering many fields,such as smart homes,smart logistics,fine agriculture and animal husbandry,national defense,and military.One of the most significant factors in wireless channels is interference,which degrades the system performance.Although the existing QR decomposition-based signal detection method is an emerging topic because of its low complexity,it does not solve the problem of poor detection performance.Therefore,this study proposes a maximumlikelihood-based QR decomposition algorithm.The main idea is to estimate the initial level of detection using the maximum likelihood principle,and then the other layer is detected using a reliable decision.The optimal candidate is selected from the feedback by deploying the candidate points in an unreliable scenario.Simulation results show that the proposed algorithm effectively reduces the interference and propagation error compared with the algorithms reported in the literature.展开更多
文摘Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.
基金This study is funded by Fujitsu-Waseda Digital Annealer FWDA Research Project and Fujitsu Co-Creation Research Laboratory at Waseda University(Joint Research between Waseda University and Fujitsu Lab).The study was also partly supported by the School of Fundamental Science and Engineering,Faculty of Science and Engineering,Waseda University,Japan.
文摘The device-to-device(D2D)networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network,forming a heterogeneous 5G and beyond(B5G)communication network.D2D communication in a cellular cell will boost the efficiency of the spectrum,increase the ability of the device,and reduce the communication burden of base stations through the sharing of approved cell resources,causing serious interference as well.The device-to-device(D2D)networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network,forming a heterogeneous 5G communication network.D2D communication in a cellular cell will boost the efficiency of the spectrum,increase the ability of the device,and reduce the communication burden of base stations through the sharing of approved cell resources,causing serious interference as well.This paper proposes an efficient algorithm to minimize interference,based on the parity of the number of antennas,to resolve this issue.The primary concept is to generate the cellular connection precoding matrix by minimizing the power of interference from the base station to non-targeted receivers.Then through the criterion of maximum SINR,the interference suppression matrix of the cellular connection is obtained.Finally,by removing intra-interference through linear interference alignment,the maximum degree of freedom is obtained.The results of the simulation show that the proposed algorithm efficiently increases the performance of the spectrum,decreases interference,improves the degrees of freedom and energy efficiency compared to current algorithms.
基金This study is supported by Fujitsu-Waseda Digital Annealer FWDA Research Project and Fujitsu Co-Creation Research Laboratory at Waseda University(Joint Research between Waseda University and Fujitsu Lab).The study was also partly supported by the School of Fundamental Science and Engineering,Faculty of Science and Engineering,Waseda University,Japan.This study was supported by the Institute for Information&Communications Technology Planning&Evaluation(IITP)Grant funded by the Korean government(MSIT)(No.2019-0-01343,Training Key Talents in Industrial Convergence Security)and Research Cluster Project,R20143,by the Zayed University Research Office.
文摘The Internet of Things(IoT)is the fourth technological revolution in the global information industry after computers,the Internet,and mobile communication networks.It combines radio-frequency identification devices,infrared sensors,global positioning systems,and various other technologies.Information sensing equipment is connected via the Internet,thus forming a vast network.When these physical devices are connected to the Internet,the user terminal can be extended and expanded to exchange information,communicate with anything,and carry out identification,positioning,tracking,monitoring,and triggering of corresponding events on each device in the network.In real life,the IoT has a wide range of applications,covering many fields,such as smart homes,smart logistics,fine agriculture and animal husbandry,national defense,and military.One of the most significant factors in wireless channels is interference,which degrades the system performance.Although the existing QR decomposition-based signal detection method is an emerging topic because of its low complexity,it does not solve the problem of poor detection performance.Therefore,this study proposes a maximumlikelihood-based QR decomposition algorithm.The main idea is to estimate the initial level of detection using the maximum likelihood principle,and then the other layer is detected using a reliable decision.The optimal candidate is selected from the feedback by deploying the candidate points in an unreliable scenario.Simulation results show that the proposed algorithm effectively reduces the interference and propagation error compared with the algorithms reported in the literature.