The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly use...The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly used chemical insecticides.We investigated the effects of the insect fungal pathogen Isaria javanica,alone and in combination with the chemical insecticide dinotefuran,on S.furcifera under both laboratory and field conditions.Our results show that I.javanica displays high infection efficiency and mortality for different stages of S.furcifera,reducing adult survival,female oviposition and ovary development.Laboratory bioassays showed that the combined use of I.javanica with a low dose(4-16 mg L^(-1))of dinotefuran resulted in higher mortality in S.furcifera than the use of I.javanica or dinotefuran alone.The combined treatment also had more significant effects on several host enzymes,including superoxide dismutase,catalase,peroxidase,and prophenol oxidase activities.In field trials,I.javanica effectively suppressed populations of rice planthoppers to low levels(22-64%of the level in untreated plots).Additional field experiments showed synergistic effects,i.e.,enhanced efficiency,for the control of S.furcifera populations using the combination of a low dose of I.javanica(1×10^(4) conidia mL^(-1))and a low dose of dinotefuran(~4.8-19.2%of normal field use levels),with control effects of>90%and a population level under 50 insects per 100 hills at 3-14 days post-treatment.Our findings indicate that the entomogenous fungus I.javanica offers an attractive biological control addition as part of the integrated pest management(IPM)practices for the control of rice plant pests.展开更多
Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance a...Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance and fieldevolved practical dual resistance of H.zea to these two toxins have been widely reported.Whether the widespread Cry1Ac/Cy2Ab dual resistance of H.zea has resulted from the selection of one shared or two independent resistance mechanisms by pyramided Bt crops remains unclear.Cadherin is a well-confirmed receptor of Cry1Ac and a suggested receptor of Cry2Ab in at least three Lepidopteran species.To test whether cadherin may serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab,we cloned H.zea cadherin(HzCadherin)cDNA and studied its functional roles in the mode of action of Cry1Ac and Cry2Ab by gain-and lossof-function analyses.Heterologous expression of HzCadherin in H.zea midgut,H.zea fat body and Sf9 cells made all three of these cell lines more susceptible to activated Cry1Ac but not activated Cry2Ab,whereas silencing HzCadherin of H.zea midgut and fat body cells significantly reduced the susceptibility to Cry1Ac but not Cry2Ab.Likewise,suppressing HzCadherin with siRNA made H.zea larvae resistant to Cry1Ac.These results clearly demonstrate that HzCadherin is not a receptor for Cry2Ab,and thus it is unlikely to serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab.展开更多
Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphi...Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.展开更多
Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholestero...Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.展开更多
Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the fa...Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the facts like limited research investigations,unavailability,and high cost of artificial diet’s constituents and their premixes,the present research investigations on the dietary aspect of P.gossypiella were conducted.The larvae of P.gossypiella were reared on different diets that were prepared using indigenous elements.The standard/laboratory diet com-prised of wheat germ meal 34.5 g,casein 30.0 g,agar–agar 20.0 g,sucrose 10.0 g,brewer’s yeast 5.0 g,α-cellulose 1.0 g,potassium-sorbate1.5 g,niplagin 0.5 g,decavitamin 0.01 g,choline-chloride 0.06 g,maize-oil 3.30 g,honey 2.0 g,and water 730.0 mL.Alternatives to cotton bolls and wheat germ meal were okra seed sprouts,okra fruit,cottonseed meal,and okra seed meals,which were included in the study to introduce an efficient and economic mass-rearing system.Results The larval development completed in 19.68d±0.05 d with a weight of 20.18mg±0.20 mg at the fourth instar fed on the cottonseed meal-based diet instead of wheat germ meal based diet.On the same diet,84.00%±4.00%,17.24 mg±0.03 mg,and 7.76d±0.06 d were recorded as pupae formation,pupal weight,and pupal duration,respectively.Adult emergence,76.00%±1.00%was recorded from pupae collected from larvae raised on cottonseed meal-based diet.These male and female moths lived for 40.25d±0.10 d,and 44.34d±0.11 d,respectively.Females deposited 21.28±0.04 eggs per day with the viability of 65.78%±0.14%.The larval mortal-ity at the fourth instar was 37.20%±1.36%and malformed pupation of 12.00%±1.41%was recorded.Replacement of wheat germ meal with that of local meals(cottonseed and okra seed)in the standard laboratory diet has saved 463.80 to 467.10 PKR with 1.62 to 1.63 cost economic returns,respectively.Conclusion This research is of novel nature as it provides a concise and workable system for the economic and suc-cessful rearing of P.gossypiella under laboratory conditions.展开更多
Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explo...Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species(Neochauliodes formosanus,Protohermes costalis,and Neoneuromus orientalis)belonging to the holometabolan order Megaloptera.These species,which share a broad and largely overlapping distribution,were analyzed using comprehensive mitogenomic data.Our findings revealed a consistent influence of vicariance on the population isolation of Neoc.formosanus and P.costalis between Hainan,Taiwan,and the East Asian mainland during the early Pleistocene,potentially hindering subsequent colonization of the later diverged Neon.orientalis to these islands.Additionally,we unveiled the dual function of the major mountain ranges in East Asia,serving both as barriers and conduits,in shaping the population structure of all three species.Notably,we demonstrated that these co-distributed species originated from Southwest,Southern,and eastern Central China,respectively,then subsequently migrated along multi-directional routes,leading to their sympatric distribution on the East Asian mainland.Furthermore,our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability.Overall,this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.展开更多
The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tre...The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tree to collapse and eventually die. The symbiotic associations with microorganisms and RPW in their gut may help their host insects’ establishment, development, nutrition assimilation, and survival. The objective of this research was the molecular characterization of the microbiome of RPW. In this study, the microbiome was compared among different tissues in females and males of RPW of three different morphs and larvae collected from date palm plantations in the Kingdom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by PCR, sequenced, and processed using the bioinformatics platform QIIME2. One ASV, corresponding to the obligate weevil symbiont Nardonella, predominated in adult female samples, constituting 56 ± 7% of total reads, but was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). For females, samples that included reproductive tissues were almost entirely composed of Nardonella (88% - 99%). When Nardonella was excluded from analyses, there were no differences between adult females and adult males, but larval samples were more species-rich and differed in microbial composition from adults. There were no consistent differences in the microbiomes among morphs. Several specimens showed evidence of infection with host-specific strains of Spiroplasma-like members of the Entomoplasmatales, which are often pathogens or vertically transmitted symbionts. Such close microbial associates deserve additional attention as potential routes to control this destructive date palm pest.展开更多
The new genus Parathrausta gen.n. in the subfamily Spilomelinae (Lepidoptera, Crambidae) is erected based on a series of specimens collected in the Afrotropical region of Saudi Arabia. The new genus is monotypical, wi...The new genus Parathrausta gen.n. in the subfamily Spilomelinae (Lepidoptera, Crambidae) is erected based on a series of specimens collected in the Afrotropical region of Saudi Arabia. The new genus is monotypical, with Parathrausta internervalis sp.n. its type species. The adults of the type species, the male genitalia, the female genitalia and the tympanal organs are described and figured. The new genus is recognized as related by characters in the male and female genitalia with genera in the tribes Steniini Guine, 1854 and Nomophilini Kuznetzov & Stekolnikov, 1979, namely with Bradina Lederer, 1863, Perisyntrocha Meyrick, 1894, Diathrausta Lederer, 1863, Diasemiopsis Munroe, 1957, Diasemiodes Munroe, 1957 and with the genera in the Duponchelia Zeller, 1847 group comprising Duponchelia Zeller, 1847, Penestola Mschler, 1890, Tatobotys Butler, 1880 and Hymenoptychis Zeller, 1852. The character states differentiating the new genus from the comparative genera are discussed. Potential autapomorphies of the new genus are listed. The tribal assignment of the new genus to the Nomophilini Kuznetzov & Stekolnikov, 1979 based on morphological characters is discussed. The support of the tribal and cladistic assignment of the new genus as a sister clade to Diathrausta Lederer, 1863 based phylogenetic analyses (NJ, MP and ML) is shown. An unusually strong genetic divergence of the genus in the COI segment of the mt-DNA based on the Tamura-Nei distance measure from the morphologically related genera is recognized and addressed.展开更多
In Côte d’Ivoire, maize (Zea mays L) is the second most cultivated cereal after rice. Since the first report of Spodoptera frugiperda in Côte d’Ivoire, maize production in the northern regions has been aff...In Côte d’Ivoire, maize (Zea mays L) is the second most cultivated cereal after rice. Since the first report of Spodoptera frugiperda in Côte d’Ivoire, maize production in the northern regions has been affected resulting in maize production losses. This study aims to study the seasonal dynamic of Spodoptera frugiperda in maize fields in the sub-Sudanese zone, main zone of maize cultivation in Côte d’Ivoire. The study was done using pheromone trap lures. The results revealed a variation in the moth population at various growth stages during rainy and dry seasons. Notably, the highest numbers of moths were consistently trapped during the whorl stage with counts ranging from 131 ± 35.7 during the rainy season to 70.6 ± 15.01 in the dry season. The lowest numbers of moths were observed during pod maturation, with counts ranging from 30.3 ± 13.05 during the rainy season to 11.7 ± 3.05 in the dry season. Between the 7<sup>th</sup> and 21<sup>st</sup> days after sowing, the count of moths displayed a consistent upward trajectory, reaching 188 moths during the rainy season. The damages were particularly observed at whorl stage. The relationship between the numbers of moths and some climatic variables revealed a negative correlation between moths numbers and rainfall (r= −0.44) and relative humidity (r= −0.684). In contrast, there were positive relationships with temperature (r = 0.16), highlighting the significant impact of temperature changes on moth population dynamics. The research highlights the need for integrated pest management strategies that consider climatic factors and growth stages of maize to mitigate the impact of this insect pest on maize.展开更多
An experiment was conducted to test the efficacy of a mechanical barrier around the tree trunk with one spray of Cypermethrin @ 1 ml/l and turmeric powder extract @ 15 g/500ml of water applied in integrated approaches...An experiment was conducted to test the efficacy of a mechanical barrier around the tree trunk with one spray of Cypermethrin @ 1 ml/l and turmeric powder extract @ 15 g/500ml of water applied in integrated approaches against mango mealybug on mango tree. There were 7 treatments including a control. The treatments were Mechanical barrier, Cypermethrin spray @ 1 ml/l, Turmeric powder spray @ 15 g/500ml of water, Cypermethrin spray + Turmeric spray, Cypermethrin spray + Mechanical barrier, Turmeric + Mechanical barrier and untreated control. Three-year-old mango plants grafted from a 5-year-old mango tree (Variety Amropali) and planted in pots were used in the experiment. The treatment, Cypermethrin spray + Mechanical barrier gave the highest reduction of mango mealybug population 87.06% to 93.90% followed by Turmeric spray + Mechanical barrier and showed 81.13% to 86.04% and Mechanical barrier alone showed 81.13% to 84.59% population reduction. Turmeric powder extract showed only (8.42% to 23.77%) population reduction of mango mealybug which was lowest compared to other treatments.展开更多
The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the...The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth,Plutella xylostella(L.).To directly validate the potential receptor role of PxABCB1 and its contribution to Bt Cry1Ac toxicity in P.xylostella,we used CRISPR/Cas9 to generate a homozygous knockout ABCB1KO strain with a 5-bp deletion in exon 3 of its gene.The ABCB1KO strain exhibited a 63-fold resistance to Cry1Ac toxin compared to the parental DBM1Ac-S strain.Intriguingly,the ABCB1KO strain also exhibited significant increases in susceptibility to abamectin and emamectin benzoate.No changes in susceptibility to various other Bt Cry proteins or synthetic insecticides were observed.The knockout strain exhibited no significant fitness costs.Overall,our study indicates that PxABCB1 can protect the insect against avermectin insecticides on one hand,while on the other hand it facilitates the toxic effect of the Bt Cry1Ac toxin.The results of this study will help to inform integrated pest management approaches against this destructive pest.展开更多
An experiment was conducted at the Mycology laboratory, Department of Plant Pathology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh to find out the efficacy of selected botanical extracts against Botrytis ...An experiment was conducted at the Mycology laboratory, Department of Plant Pathology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh to find out the efficacy of selected botanical extracts against Botrytis gladiolorum (Bg) causing gladiolus leaf blight. Infected leaves samples were collected from gladiolus farmers’ field and brought to the laboratory for study. Ten selected botanicals were used against the colony growth of (Bg). The botanicals were Mehendi, Chrysanthemum, Basil (Tulsi), Onion, Neem, Bael, Arjuna, Garlic, Aloevera (Ghritkumary) and Turmeric. Botanical extracts were applied at the rate of 5%, 10% and 20%. The radial mycelia growth was found minimum (11.60 mm) in garlic extract treated plate at the dose of 5% at 5 DAI, which was statistically similar with turmeric extract treated (14.00 mm) plate and the inhibition of growth was 60% and 51.72%, respectively. Similar trend was found at 10 DAI and 15 DAI. At 15 DAI, garlic and turmeric extract gave the best result against Bg, which was statistically similar with onion (50.07% inhibition) and mehendi (49.93%). All botanicals showed significantly different results over control and found effective in reducing the mycelial growth at the dose of 10%. At 5 DAI, no radial mycelia growth was found in garlic treated plate, which was statistically similar with onion treated plate, means that the inhibition of growth was 100%. Similar trend was also found at 10 DAI, and 15 DAI but at 15 DAI, onion (30.20 mm) gave the statistically similar results with Garlic (30.10 mm) and the mycelia growth inhibition was (57.70%) and (57.84%), respectively. In case of 20% dose, garlic extract showed the best result at 5 DAI and the radial mycelia growth was found minimum (00.00 mm) which was statistically similar with onion extract treated (00.00 mm) plate and turmeric extract treated plate. The inhibition of growth was 100%. At 15 DAI, the inhibition of fungal growth was found (73.74%), (71.23%) and (66.90%), respectively with treated by turmeric (18.80 mm), garlic (20.60 mm) and onion (23.70 mm).展开更多
A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing imp...A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing important horticultural traits.Canopy density during leaf fall is important as the seasonal canopy dynamics provides insights to environmental cues and breeding potential of germplasm.The ability of visual raters to estimate canopy density on a subset of the provenance collection(76 trees)as an indicator of leaf shed during autumn along with image analysis values was explored.Mean canopy density using the image analysis software was less compared to visual estimates(11.9%vs 18.4%,respectively).At higher canopy densities,the raters overestimated foliage density,but overall agreement between raters and measured values was good(ρc=0.849 to 0.915),and inter-rater reliability was high(R^(2)=0.910 to 0.953).The provenance from Missouri(MOL),the northernmost provenance,had the lowest canopy density in November,and results show that the higher the latitude of the provenance,the lower the canopy density.Based on regression,the source provenance latitude explained 0.609 of the variation using image analysis,and0.551 to 0.640 when based on the rater estimates of canopy density.Visual assessment of pecan canopy density due to late season leaf fall for comparing pecan genotypes provides accurate and reliable estimates and could be used in future studies of the whole provenance collection.展开更多
To ensure proper dosage of a drug,analytical quantification of it in biofluid is necessary.Liquid chromatography mass spectrometry(LC-MS)is the conventional method of choice as it permits accurate identification and q...To ensure proper dosage of a drug,analytical quantification of it in biofluid is necessary.Liquid chromatography mass spectrometry(LC-MS)is the conventional method of choice as it permits accurate identification and quantification.However,it requires expensive instrumentation and is not appropriate for bedside use.Using soluble epoxide hydrolase(sEH)inhibitors(EC5026 and TPPU)as examples,we report development of a nanobody-based enzyme-linked immunosorbent assay(ELISA)for such small molecules and its use to accurately quantify the drug chemicals in human samples.Under optimized conditions,two nanobody-based ELISAs were successfully established for EC5026 and TPPU with low limits of detection of 0.085 ng/mL and 0.31 ng/mL,respectively,and two order of magnitude linear ranges with high precision and accuracy.The assay was designed to detect parent and two biologically active metabolites in the investigation of a new drug candidate EC5026.In addition,the ELISAs displayed excellent correlation with LC-MS analysis and evaluation of inhibitory potency.The results indicate that nanobody-based ELISA methods can efficiently analyze drug like compounds.These methods could be easily implemented by the bedside,in the field in remote areas or in veterinary practice.This work illustrates that nanobody based assays offer alternative and supplementary analytical tools to mass spectrometry for monitoring small molecule medicines during clinical development and therapy.Attributes of nanobody based pharmaceutical assays are discussed.展开更多
In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A gene...In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A genes has widely occurred in the U.S.In this study,two trials were performed to investigate larval survival and development of a Cry1A.105/Cry2Ab2 dual-protein resistant(VT2P-RR),a susceptible,and an F1 heterozygous(VT2P-RS)populations of H.zea on ears of nine Bt and three non-Bt maize hybrids.The Bt maize hybrids evaluated represent five common pyramided traits expressing two or three of the Cry1A.105,Cry1Ab,Cry1F,Cry2Ab2,and Vip3Aa20 proteins.In the laboratory,neonates of the three H.zea populations were inoculated on silks of ears collected from maize at R1-R2 plant stages;and larval survivorship was checked 10 d after neonate release.All three insect populations survived normally on non-Bt maize ears.Varied numbers of VT2P-RR and VT2P-RS survived on ears of Cry1A.105/Cry2Ab2 maize,while all larvae of the three populations died or could not develop on ears of Vip3Aa20-expressing maize.The results demonstrated that the dual-protein resistant H.zea was not cross-resistant to Vip3Aa20-expressing maize,and thus traits with vip3Aa20 gene should be effective to manage Cry1A.105/Cry2Ab2-resistant H.zea.The resistance in VT2P-RR was determined to be incomplete on Cry1A.105/Cry2Ab2 maize.The effective dominance levels varied greatly,from recessive to incompletely dominant,depending on maize hybrids and trials,suggesting that proper selection of maize hybrids could be important for mitigating the Cry1A.105/Cry2Ab2 resistance.The data generated should aid in modeling multiple-protein Bt resistance in H.zea.展开更多
Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,geneti...Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,genetic structure,and historical population dynamics)is still unclear,impeding the development of biological control of insect pests.Population genetic research has the potential to optimize strategies at different stages of the biological control processes.This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.The microsatellite dataset showed a moderate level of genetic diversity,but the mitochondrial genes showed a high level of genetic diversity.Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.Propylea japonica has not yet formed a significant genealogical structure in China,but there was a population structure signal to some extent,which may be caused by frequent gene flow between populations.The species has experienced population expansion after a bottleneck,potentially thanks to the tri-trophic plant–insect–natural enemy relationship.Knowledge of population genetics is of importance in using predators to control pests.Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.展开更多
Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection ...Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.展开更多
The beet armyworm(BAW),Spodoptera exigua(Lepidoptera:Noctuidae)is a highly destructive pest of vegetables and field crops.Management of beet armyworm primarily relies on synthetic pesticides,which is threatening the b...The beet armyworm(BAW),Spodoptera exigua(Lepidoptera:Noctuidae)is a highly destructive pest of vegetables and field crops.Management of beet armyworm primarily relies on synthetic pesticides,which is threatening the beneficial community and environment.Most importantly,the BAW developed resistance to synthetic pesticides with making it difficult to manage.Therefore,alternative and environment-friendly pest management tactics are urgently required.The use of pesticidal plant extracts provides an effective way for a sustainable pest management program.To evaluate the use of pesticidal plant extracts against BAW,we selected six plant species(Lantana camara,Aloe vera,Azadirachta indica,Cymbopogon citratus,Nicotiana tabacum,and Ocimum basilicum)for initial screening experiment.Four out of six plant species such as A.indica,N.tabacum,C.citratus and O.basilicum showed promising mortality of more than 50%.Therefore,we selected these four plant extracts for the subsequent experiments.Through contact bioassay,A.indica showed high mortality 66.63%,followed by the N.tabacum 53.33%,at 10%w/v concentration.Similarly,N.tabacum showed the highest mortality rate,66%at 10%w/v concentration,followed by the A.indica 46%through feeding bioassay.Furthermore,the feeding deterrence assay showed that C.citratus had a high antifeedant index(−50)followed by A.indica(−39),and N.tabacum(−28).In living plant assay,the N.tabacum extract showed a low mean damage score 3.6 on living cotton plant followed by C.citratus 4.5 and A.indica 5.5.Hence,extracts of three plant species provided promising results against the BAW,which can minimize the use of synthetic chemicals,particularly for small landholding farmers.Further studies are also required to evaluate the effects of these plant extract against BAW on cotton plants under field conditions to optimize the further use.展开更多
The bird cherry-oat aphid (Rhopalosiphum padi [Linnaeus, 1758]) is considered a key pest of cereal crops worldwide, causing direct damage through sap feeding and by acting as a vector for viral diseases. Managing aphi...The bird cherry-oat aphid (Rhopalosiphum padi [Linnaeus, 1758]) is considered a key pest of cereal crops worldwide, causing direct damage through sap feeding and by acting as a vector for viral diseases. Managing aphids is challenging because of their biology and potential resistance to insecticides. Developing resistant barley genotypes is a sustainable strategy for managing BCOA. In this study, we assessed responses of susceptible “Morex” and resistant “BCO R001” barley, Hordeum vulgare L. genotypes to different initial BCOA densities (0, 50, 100 or 200 aphids.plant<sup>-1</sup>). Physiological and morphological parameters were measured weekly for four weeks after infestation. Chlorophyll content, photosynthetic rate, plant aerial fresh and dry weight were greater for the resistant cultivar at lower aphid abundances and up to three weeks after infestation. Carbon assimilation curves (A/Ci) of infested “BCO R001” were similar to controls 15 days post infestation, differing from Morex. However, BCOA infestation of 50 aphid.plant<sup>-1</sup> for two weeks negatively impacted the fitness of both genotypes. Initial resistance by BCO R001 to BCOA infestation can allow growers and natural enemies more time contributing to more effective and sustainable management of BCOA infestations.展开更多
Taxonomic and faunistic results are presented on five genera of the Spilomelinae based on material collected in the Afrotropical parts of the Arabian Peninsula. Synclera fifensis sp.n. is newly described. The differen...Taxonomic and faunistic results are presented on five genera of the Spilomelinae based on material collected in the Afrotropical parts of the Arabian Peninsula. Synclera fifensis sp.n. is newly described. The differential characters from the closest related congeners Synclera traducalis Zeller, 1852 and Synclera seychellensis Shaffer & Munroe, 2007 are listed. The three species form a complex of species discernible in internal character states only. A determination key to the members of this species group is provided. Four new combinations into the genus Pramadea Moore, 1888 are proposed—Pramadea trifidalis (Hampson, 1908) comb.n., Pramadea albopunctum (Guillermet, 1996) comb.n., Pramadea christophalis (Viette, 1988) comb.n. and Pramadea minoralis (Warren, 1892) comb.n. Pramadea trifidalis (Hampson, 1908) comb.n. is redescribed and reported as new for the fauna of Saudi Arabia. The male, female genitalia and tympanal are figured. Chabulina astomalis (Felder & Rogenhofer, 1875) is reported as new to the entomofauna of the Arabian Peninsula. The records of the closely related Chabulina onychinalis (Guené e, 1854) for the Arabian Peninsula are discussed and put into question. The presence of Pardomima zanclophora Martin, 1955 and Hodebertia testalis (Fabricius, 1794) on the Arabian Peninsula is reconfirmed by recent records from Saudi Arabia.展开更多
基金funded by grants from the Science and Technology Planning Project of Guangzhou,China(202002020029)the Science and Technology Planning Project of Guangdong Province,China(2019B020217003)+1 种基金the National Key R&D Program of China(2018YFD02003)the National Key Technology Support Program of China(201303019-02)。
文摘The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly used chemical insecticides.We investigated the effects of the insect fungal pathogen Isaria javanica,alone and in combination with the chemical insecticide dinotefuran,on S.furcifera under both laboratory and field conditions.Our results show that I.javanica displays high infection efficiency and mortality for different stages of S.furcifera,reducing adult survival,female oviposition and ovary development.Laboratory bioassays showed that the combined use of I.javanica with a low dose(4-16 mg L^(-1))of dinotefuran resulted in higher mortality in S.furcifera than the use of I.javanica or dinotefuran alone.The combined treatment also had more significant effects on several host enzymes,including superoxide dismutase,catalase,peroxidase,and prophenol oxidase activities.In field trials,I.javanica effectively suppressed populations of rice planthoppers to low levels(22-64%of the level in untreated plots).Additional field experiments showed synergistic effects,i.e.,enhanced efficiency,for the control of S.furcifera populations using the combination of a low dose of I.javanica(1×10^(4) conidia mL^(-1))and a low dose of dinotefuran(~4.8-19.2%of normal field use levels),with control effects of>90%and a population level under 50 insects per 100 hills at 3-14 days post-treatment.Our findings indicate that the entomogenous fungus I.javanica offers an attractive biological control addition as part of the integrated pest management(IPM)practices for the control of rice plant pests.
基金funded by the USDA National Institute of Food and Agriculture (Hatch Grant ARZT-1360890-H31-164 and multi-state grant ARZ-T1370680-R31-172 (NC246))the National Natural Science Foundation of China (NSFC)–Henan Joint Major Grant (U2004206)+2 种基金the State Key Laboratory of Cotton Biology Open Fund, Zhengzhou University, China (CB2020A06)the Henan Agriculture Research System, China (HARS22-09-G3)the earmarked fund for China Agriculture Research System (CARS-27)
文摘Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance and fieldevolved practical dual resistance of H.zea to these two toxins have been widely reported.Whether the widespread Cry1Ac/Cy2Ab dual resistance of H.zea has resulted from the selection of one shared or two independent resistance mechanisms by pyramided Bt crops remains unclear.Cadherin is a well-confirmed receptor of Cry1Ac and a suggested receptor of Cry2Ab in at least three Lepidopteran species.To test whether cadherin may serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab,we cloned H.zea cadherin(HzCadherin)cDNA and studied its functional roles in the mode of action of Cry1Ac and Cry2Ab by gain-and lossof-function analyses.Heterologous expression of HzCadherin in H.zea midgut,H.zea fat body and Sf9 cells made all three of these cell lines more susceptible to activated Cry1Ac but not activated Cry2Ab,whereas silencing HzCadherin of H.zea midgut and fat body cells significantly reduced the susceptibility to Cry1Ac but not Cry2Ab.Likewise,suppressing HzCadherin with siRNA made H.zea larvae resistant to Cry1Ac.These results clearly demonstrate that HzCadherin is not a receptor for Cry2Ab,and thus it is unlikely to serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab.
基金supported by the National Natural Science Foundation of China(31972267 and 3227253)the Chinese Universities Scientific Fund(2023TC109)。
文摘Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.
基金supported by the National Key R&D Program of China (2022YFE0196200)the National Natural Science Foundation of China–Deutsche Forschungsgemeinschaft of Germany (31761133021)+3 种基金the National Natural Science Foundation of China (31970469 and 31701794)the earmarked fund for Modern Agro-industry Technology Research System, China (2023CYJSTX01-20)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (2017104)the Fund for Shanxi “1331 Project”, China
文摘Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.
基金Punjab Agriculture Research Board funds for the project "A comprehensive integrated scientific approach for the development of sustainable management strategies of pink bollworm(Pectinophora gossypiella)".
文摘Background Pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae)has become a poten-tial pest of cotton by causing substantial yield losses around the world including Pakistan.Keeping in view the facts like limited research investigations,unavailability,and high cost of artificial diet’s constituents and their premixes,the present research investigations on the dietary aspect of P.gossypiella were conducted.The larvae of P.gossypiella were reared on different diets that were prepared using indigenous elements.The standard/laboratory diet com-prised of wheat germ meal 34.5 g,casein 30.0 g,agar–agar 20.0 g,sucrose 10.0 g,brewer’s yeast 5.0 g,α-cellulose 1.0 g,potassium-sorbate1.5 g,niplagin 0.5 g,decavitamin 0.01 g,choline-chloride 0.06 g,maize-oil 3.30 g,honey 2.0 g,and water 730.0 mL.Alternatives to cotton bolls and wheat germ meal were okra seed sprouts,okra fruit,cottonseed meal,and okra seed meals,which were included in the study to introduce an efficient and economic mass-rearing system.Results The larval development completed in 19.68d±0.05 d with a weight of 20.18mg±0.20 mg at the fourth instar fed on the cottonseed meal-based diet instead of wheat germ meal based diet.On the same diet,84.00%±4.00%,17.24 mg±0.03 mg,and 7.76d±0.06 d were recorded as pupae formation,pupal weight,and pupal duration,respectively.Adult emergence,76.00%±1.00%was recorded from pupae collected from larvae raised on cottonseed meal-based diet.These male and female moths lived for 40.25d±0.10 d,and 44.34d±0.11 d,respectively.Females deposited 21.28±0.04 eggs per day with the viability of 65.78%±0.14%.The larval mortal-ity at the fourth instar was 37.20%±1.36%and malformed pupation of 12.00%±1.41%was recorded.Replacement of wheat germ meal with that of local meals(cottonseed and okra seed)in the standard laboratory diet has saved 463.80 to 467.10 PKR with 1.62 to 1.63 cost economic returns,respectively.Conclusion This research is of novel nature as it provides a concise and workable system for the economic and suc-cessful rearing of P.gossypiella under laboratory conditions.
基金supported by the National Natural Science Foundation of China(32170448,32130012,32300374)Beijing Natural Science Foundation(5212011)2115 Talent Development Program of China Agricultural University,and National Animal Collection Resource Center,China。
文摘Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species(Neochauliodes formosanus,Protohermes costalis,and Neoneuromus orientalis)belonging to the holometabolan order Megaloptera.These species,which share a broad and largely overlapping distribution,were analyzed using comprehensive mitogenomic data.Our findings revealed a consistent influence of vicariance on the population isolation of Neoc.formosanus and P.costalis between Hainan,Taiwan,and the East Asian mainland during the early Pleistocene,potentially hindering subsequent colonization of the later diverged Neon.orientalis to these islands.Additionally,we unveiled the dual function of the major mountain ranges in East Asia,serving both as barriers and conduits,in shaping the population structure of all three species.Notably,we demonstrated that these co-distributed species originated from Southwest,Southern,and eastern Central China,respectively,then subsequently migrated along multi-directional routes,leading to their sympatric distribution on the East Asian mainland.Furthermore,our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability.Overall,this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.
文摘The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tree to collapse and eventually die. The symbiotic associations with microorganisms and RPW in their gut may help their host insects’ establishment, development, nutrition assimilation, and survival. The objective of this research was the molecular characterization of the microbiome of RPW. In this study, the microbiome was compared among different tissues in females and males of RPW of three different morphs and larvae collected from date palm plantations in the Kingdom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by PCR, sequenced, and processed using the bioinformatics platform QIIME2. One ASV, corresponding to the obligate weevil symbiont Nardonella, predominated in adult female samples, constituting 56 ± 7% of total reads, but was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). For females, samples that included reproductive tissues were almost entirely composed of Nardonella (88% - 99%). When Nardonella was excluded from analyses, there were no differences between adult females and adult males, but larval samples were more species-rich and differed in microbial composition from adults. There were no consistent differences in the microbiomes among morphs. Several specimens showed evidence of infection with host-specific strains of Spiroplasma-like members of the Entomoplasmatales, which are often pathogens or vertically transmitted symbionts. Such close microbial associates deserve additional attention as potential routes to control this destructive date palm pest.
文摘The new genus Parathrausta gen.n. in the subfamily Spilomelinae (Lepidoptera, Crambidae) is erected based on a series of specimens collected in the Afrotropical region of Saudi Arabia. The new genus is monotypical, with Parathrausta internervalis sp.n. its type species. The adults of the type species, the male genitalia, the female genitalia and the tympanal organs are described and figured. The new genus is recognized as related by characters in the male and female genitalia with genera in the tribes Steniini Guine, 1854 and Nomophilini Kuznetzov & Stekolnikov, 1979, namely with Bradina Lederer, 1863, Perisyntrocha Meyrick, 1894, Diathrausta Lederer, 1863, Diasemiopsis Munroe, 1957, Diasemiodes Munroe, 1957 and with the genera in the Duponchelia Zeller, 1847 group comprising Duponchelia Zeller, 1847, Penestola Mschler, 1890, Tatobotys Butler, 1880 and Hymenoptychis Zeller, 1852. The character states differentiating the new genus from the comparative genera are discussed. Potential autapomorphies of the new genus are listed. The tribal assignment of the new genus to the Nomophilini Kuznetzov & Stekolnikov, 1979 based on morphological characters is discussed. The support of the tribal and cladistic assignment of the new genus as a sister clade to Diathrausta Lederer, 1863 based phylogenetic analyses (NJ, MP and ML) is shown. An unusually strong genetic divergence of the genus in the COI segment of the mt-DNA based on the Tamura-Nei distance measure from the morphologically related genera is recognized and addressed.
文摘In Côte d’Ivoire, maize (Zea mays L) is the second most cultivated cereal after rice. Since the first report of Spodoptera frugiperda in Côte d’Ivoire, maize production in the northern regions has been affected resulting in maize production losses. This study aims to study the seasonal dynamic of Spodoptera frugiperda in maize fields in the sub-Sudanese zone, main zone of maize cultivation in Côte d’Ivoire. The study was done using pheromone trap lures. The results revealed a variation in the moth population at various growth stages during rainy and dry seasons. Notably, the highest numbers of moths were consistently trapped during the whorl stage with counts ranging from 131 ± 35.7 during the rainy season to 70.6 ± 15.01 in the dry season. The lowest numbers of moths were observed during pod maturation, with counts ranging from 30.3 ± 13.05 during the rainy season to 11.7 ± 3.05 in the dry season. Between the 7<sup>th</sup> and 21<sup>st</sup> days after sowing, the count of moths displayed a consistent upward trajectory, reaching 188 moths during the rainy season. The damages were particularly observed at whorl stage. The relationship between the numbers of moths and some climatic variables revealed a negative correlation between moths numbers and rainfall (r= −0.44) and relative humidity (r= −0.684). In contrast, there were positive relationships with temperature (r = 0.16), highlighting the significant impact of temperature changes on moth population dynamics. The research highlights the need for integrated pest management strategies that consider climatic factors and growth stages of maize to mitigate the impact of this insect pest on maize.
文摘An experiment was conducted to test the efficacy of a mechanical barrier around the tree trunk with one spray of Cypermethrin @ 1 ml/l and turmeric powder extract @ 15 g/500ml of water applied in integrated approaches against mango mealybug on mango tree. There were 7 treatments including a control. The treatments were Mechanical barrier, Cypermethrin spray @ 1 ml/l, Turmeric powder spray @ 15 g/500ml of water, Cypermethrin spray + Turmeric spray, Cypermethrin spray + Mechanical barrier, Turmeric + Mechanical barrier and untreated control. Three-year-old mango plants grafted from a 5-year-old mango tree (Variety Amropali) and planted in pots were used in the experiment. The treatment, Cypermethrin spray + Mechanical barrier gave the highest reduction of mango mealybug population 87.06% to 93.90% followed by Turmeric spray + Mechanical barrier and showed 81.13% to 86.04% and Mechanical barrier alone showed 81.13% to 84.59% population reduction. Turmeric powder extract showed only (8.42% to 23.77%) population reduction of mango mealybug which was lowest compared to other treatments.
基金the Laboratory of Lingnan Modern Agriculture Project,China(NT2021003)National Natural Science Foundation of China(32022074,32221004 and 32172458)Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables,Chinese Academy of Agricultural Sciences,and the Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-CSCB-202303)。
文摘The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth,Plutella xylostella(L.).To directly validate the potential receptor role of PxABCB1 and its contribution to Bt Cry1Ac toxicity in P.xylostella,we used CRISPR/Cas9 to generate a homozygous knockout ABCB1KO strain with a 5-bp deletion in exon 3 of its gene.The ABCB1KO strain exhibited a 63-fold resistance to Cry1Ac toxin compared to the parental DBM1Ac-S strain.Intriguingly,the ABCB1KO strain also exhibited significant increases in susceptibility to abamectin and emamectin benzoate.No changes in susceptibility to various other Bt Cry proteins or synthetic insecticides were observed.The knockout strain exhibited no significant fitness costs.Overall,our study indicates that PxABCB1 can protect the insect against avermectin insecticides on one hand,while on the other hand it facilitates the toxic effect of the Bt Cry1Ac toxin.The results of this study will help to inform integrated pest management approaches against this destructive pest.
文摘An experiment was conducted at the Mycology laboratory, Department of Plant Pathology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh to find out the efficacy of selected botanical extracts against Botrytis gladiolorum (Bg) causing gladiolus leaf blight. Infected leaves samples were collected from gladiolus farmers’ field and brought to the laboratory for study. Ten selected botanicals were used against the colony growth of (Bg). The botanicals were Mehendi, Chrysanthemum, Basil (Tulsi), Onion, Neem, Bael, Arjuna, Garlic, Aloevera (Ghritkumary) and Turmeric. Botanical extracts were applied at the rate of 5%, 10% and 20%. The radial mycelia growth was found minimum (11.60 mm) in garlic extract treated plate at the dose of 5% at 5 DAI, which was statistically similar with turmeric extract treated (14.00 mm) plate and the inhibition of growth was 60% and 51.72%, respectively. Similar trend was found at 10 DAI and 15 DAI. At 15 DAI, garlic and turmeric extract gave the best result against Bg, which was statistically similar with onion (50.07% inhibition) and mehendi (49.93%). All botanicals showed significantly different results over control and found effective in reducing the mycelial growth at the dose of 10%. At 5 DAI, no radial mycelia growth was found in garlic treated plate, which was statistically similar with onion treated plate, means that the inhibition of growth was 100%. Similar trend was also found at 10 DAI, and 15 DAI but at 15 DAI, onion (30.20 mm) gave the statistically similar results with Garlic (30.10 mm) and the mycelia growth inhibition was (57.70%) and (57.84%), respectively. In case of 20% dose, garlic extract showed the best result at 5 DAI and the radial mycelia growth was found minimum (00.00 mm) which was statistically similar with onion extract treated (00.00 mm) plate and turmeric extract treated plate. The inhibition of growth was 100%. At 15 DAI, the inhibition of fungal growth was found (73.74%), (71.23%) and (66.90%), respectively with treated by turmeric (18.80 mm), garlic (20.60 mm) and onion (23.70 mm).
基金supported by the USDA-ARS through CRIS project 6606-21220-014–00Dthe National Institute of Food and Agriculture–Specialty Crops Research Initiative grant 2016-51181-25408“Coordinated development of genetic tools for pecan”。
文摘A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing important horticultural traits.Canopy density during leaf fall is important as the seasonal canopy dynamics provides insights to environmental cues and breeding potential of germplasm.The ability of visual raters to estimate canopy density on a subset of the provenance collection(76 trees)as an indicator of leaf shed during autumn along with image analysis values was explored.Mean canopy density using the image analysis software was less compared to visual estimates(11.9%vs 18.4%,respectively).At higher canopy densities,the raters overestimated foliage density,but overall agreement between raters and measured values was good(ρc=0.849 to 0.915),and inter-rater reliability was high(R^(2)=0.910 to 0.953).The provenance from Missouri(MOL),the northernmost provenance,had the lowest canopy density in November,and results show that the higher the latitude of the provenance,the lower the canopy density.Based on regression,the source provenance latitude explained 0.609 of the variation using image analysis,and0.551 to 0.640 when based on the rater estimates of canopy density.Visual assessment of pecan canopy density due to late season leaf fall for comparing pecan genotypes provides accurate and reliable estimates and could be used in future studies of the whole provenance collection.
基金supported by NIEHS(RIVER Award,R35 ES030443)NIEHS(Superfund Award,P42 ES004699)+6 种基金NINDS(Counter ActProgram U54 NS127758)Juvenile Diabetes Research Foundation(2-SRA-2022-1210-S-B)Guangzhou Science and Technology Foundation(Grant No.:201903010034)Natural Resources Science Foundation of Guangdong Province(Grant No.:2018A030313926)Science and Technology Foundation Key R&D Program of Guangdong Province(Grant Nos.:2019B020209009 and 2019B020218009)R&D Program of Guangdong Province Drug Administration(Grant Nos.:2021TDZ09 and 2021YDZ06)supported by China Scholarship Council(CSC)(202108440382).
文摘To ensure proper dosage of a drug,analytical quantification of it in biofluid is necessary.Liquid chromatography mass spectrometry(LC-MS)is the conventional method of choice as it permits accurate identification and quantification.However,it requires expensive instrumentation and is not appropriate for bedside use.Using soluble epoxide hydrolase(sEH)inhibitors(EC5026 and TPPU)as examples,we report development of a nanobody-based enzyme-linked immunosorbent assay(ELISA)for such small molecules and its use to accurately quantify the drug chemicals in human samples.Under optimized conditions,two nanobody-based ELISAs were successfully established for EC5026 and TPPU with low limits of detection of 0.085 ng/mL and 0.31 ng/mL,respectively,and two order of magnitude linear ranges with high precision and accuracy.The assay was designed to detect parent and two biologically active metabolites in the investigation of a new drug candidate EC5026.In addition,the ELISAs displayed excellent correlation with LC-MS analysis and evaluation of inhibitory potency.The results indicate that nanobody-based ELISA methods can efficiently analyze drug like compounds.These methods could be easily implemented by the bedside,in the field in remote areas or in veterinary practice.This work illustrates that nanobody based assays offer alternative and supplementary analytical tools to mass spectrometry for monitoring small molecule medicines during clinical development and therapy.Attributes of nanobody based pharmaceutical assays are discussed.
基金This article is published with the approval of the Director of the Louisiana Agricultural Experiment Station as manuscript No.2022-234-37238This project represents work supported by Bayer Crop Science(St.Louis,MO,USA)the Hatch funds from the USDA National Institute of Food and Agriculture,and the USDA Regional Research Project NC-246.
文摘In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A genes has widely occurred in the U.S.In this study,two trials were performed to investigate larval survival and development of a Cry1A.105/Cry2Ab2 dual-protein resistant(VT2P-RR),a susceptible,and an F1 heterozygous(VT2P-RS)populations of H.zea on ears of nine Bt and three non-Bt maize hybrids.The Bt maize hybrids evaluated represent five common pyramided traits expressing two or three of the Cry1A.105,Cry1Ab,Cry1F,Cry2Ab2,and Vip3Aa20 proteins.In the laboratory,neonates of the three H.zea populations were inoculated on silks of ears collected from maize at R1-R2 plant stages;and larval survivorship was checked 10 d after neonate release.All three insect populations survived normally on non-Bt maize ears.Varied numbers of VT2P-RR and VT2P-RS survived on ears of Cry1A.105/Cry2Ab2 maize,while all larvae of the three populations died or could not develop on ears of Vip3Aa20-expressing maize.The results demonstrated that the dual-protein resistant H.zea was not cross-resistant to Vip3Aa20-expressing maize,and thus traits with vip3Aa20 gene should be effective to manage Cry1A.105/Cry2Ab2-resistant H.zea.The resistance in VT2P-RR was determined to be incomplete on Cry1A.105/Cry2Ab2 maize.The effective dominance levels varied greatly,from recessive to incompletely dominant,depending on maize hybrids and trials,suggesting that proper selection of maize hybrids could be important for mitigating the Cry1A.105/Cry2Ab2 resistance.The data generated should aid in modeling multiple-protein Bt resistance in H.zea.
基金supported by a grant from the Key S&T Special Project of Henan,China(201300111500)the National Key R&D Program of China(2018YFD0200600)+1 种基金the Modern Agricultural System in Industry Technology of Henan Province,China(S2015-02-G05)the Key R&D and Promotion Project in Henan Province,China(212102110471).
文摘Propylea japonica(Coleoptera:Coccinellidae)is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.However,its genetic pattern(i.e.,genetic variation,genetic structure,and historical population dynamics)is still unclear,impeding the development of biological control of insect pests.Population genetic research has the potential to optimize strategies at different stages of the biological control processes.This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.The microsatellite dataset showed a moderate level of genetic diversity,but the mitochondrial genes showed a high level of genetic diversity.Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.Propylea japonica has not yet formed a significant genealogical structure in China,but there was a population structure signal to some extent,which may be caused by frequent gene flow between populations.The species has experienced population expansion after a bottleneck,potentially thanks to the tri-trophic plant–insect–natural enemy relationship.Knowledge of population genetics is of importance in using predators to control pests.Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.
基金supported by Foundation for Research Support of the State of Bahia(FAPESB)the CAPES Foundation(Brazilian Ministry of Education+1 种基金Finance Code 001)for financial supportBahia Association of Cotton Producers。
文摘Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.
文摘The beet armyworm(BAW),Spodoptera exigua(Lepidoptera:Noctuidae)is a highly destructive pest of vegetables and field crops.Management of beet armyworm primarily relies on synthetic pesticides,which is threatening the beneficial community and environment.Most importantly,the BAW developed resistance to synthetic pesticides with making it difficult to manage.Therefore,alternative and environment-friendly pest management tactics are urgently required.The use of pesticidal plant extracts provides an effective way for a sustainable pest management program.To evaluate the use of pesticidal plant extracts against BAW,we selected six plant species(Lantana camara,Aloe vera,Azadirachta indica,Cymbopogon citratus,Nicotiana tabacum,and Ocimum basilicum)for initial screening experiment.Four out of six plant species such as A.indica,N.tabacum,C.citratus and O.basilicum showed promising mortality of more than 50%.Therefore,we selected these four plant extracts for the subsequent experiments.Through contact bioassay,A.indica showed high mortality 66.63%,followed by the N.tabacum 53.33%,at 10%w/v concentration.Similarly,N.tabacum showed the highest mortality rate,66%at 10%w/v concentration,followed by the A.indica 46%through feeding bioassay.Furthermore,the feeding deterrence assay showed that C.citratus had a high antifeedant index(−50)followed by A.indica(−39),and N.tabacum(−28).In living plant assay,the N.tabacum extract showed a low mean damage score 3.6 on living cotton plant followed by C.citratus 4.5 and A.indica 5.5.Hence,extracts of three plant species provided promising results against the BAW,which can minimize the use of synthetic chemicals,particularly for small landholding farmers.Further studies are also required to evaluate the effects of these plant extract against BAW on cotton plants under field conditions to optimize the further use.
文摘The bird cherry-oat aphid (Rhopalosiphum padi [Linnaeus, 1758]) is considered a key pest of cereal crops worldwide, causing direct damage through sap feeding and by acting as a vector for viral diseases. Managing aphids is challenging because of their biology and potential resistance to insecticides. Developing resistant barley genotypes is a sustainable strategy for managing BCOA. In this study, we assessed responses of susceptible “Morex” and resistant “BCO R001” barley, Hordeum vulgare L. genotypes to different initial BCOA densities (0, 50, 100 or 200 aphids.plant<sup>-1</sup>). Physiological and morphological parameters were measured weekly for four weeks after infestation. Chlorophyll content, photosynthetic rate, plant aerial fresh and dry weight were greater for the resistant cultivar at lower aphid abundances and up to three weeks after infestation. Carbon assimilation curves (A/Ci) of infested “BCO R001” were similar to controls 15 days post infestation, differing from Morex. However, BCOA infestation of 50 aphid.plant<sup>-1</sup> for two weeks negatively impacted the fitness of both genotypes. Initial resistance by BCO R001 to BCOA infestation can allow growers and natural enemies more time contributing to more effective and sustainable management of BCOA infestations.
文摘Taxonomic and faunistic results are presented on five genera of the Spilomelinae based on material collected in the Afrotropical parts of the Arabian Peninsula. Synclera fifensis sp.n. is newly described. The differential characters from the closest related congeners Synclera traducalis Zeller, 1852 and Synclera seychellensis Shaffer & Munroe, 2007 are listed. The three species form a complex of species discernible in internal character states only. A determination key to the members of this species group is provided. Four new combinations into the genus Pramadea Moore, 1888 are proposed—Pramadea trifidalis (Hampson, 1908) comb.n., Pramadea albopunctum (Guillermet, 1996) comb.n., Pramadea christophalis (Viette, 1988) comb.n. and Pramadea minoralis (Warren, 1892) comb.n. Pramadea trifidalis (Hampson, 1908) comb.n. is redescribed and reported as new for the fauna of Saudi Arabia. The male, female genitalia and tympanal are figured. Chabulina astomalis (Felder & Rogenhofer, 1875) is reported as new to the entomofauna of the Arabian Peninsula. The records of the closely related Chabulina onychinalis (Guené e, 1854) for the Arabian Peninsula are discussed and put into question. The presence of Pardomima zanclophora Martin, 1955 and Hodebertia testalis (Fabricius, 1794) on the Arabian Peninsula is reconfirmed by recent records from Saudi Arabia.