Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films werestudied and the features of these processes were discussed in relation to photofunctional polymers, An aromatic m...Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films werestudied and the features of these processes were discussed in relation to photofunctional polymers, An aromatic moleculehaving low ionization potential, e.g., N,N,N',N'-tetramethyl-p-phenylene diamine doped in poly(methyl methacrylate)(PMMA) film was easily photoionized by intense laser ligh excitation, giving a colored radical cation (photochromism) anda trapped electron in PMMA matrix. As a reversed process, the radical cation recombined with the trapped electron, showingdiscoloration and emitting luminescence, either isothermal luminescence (ITL), or thermoluminescence (TL). In this report,ITL and TL through the charge recombination process were studied and the luminescence was suggested as a mean of the read-out of photorecording.展开更多
Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very fiat LCST phase separation line are theoretically studied on the basis of cooperative ...Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very fiat LCST phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules and higher fractal assembly, are studied by USANS with theoretical modeling of the scattering function.展开更多
It is a great pleasure for international colleagues in polymer science to celebrate Professor Fosong Wang on his 80th birthday. Professor Fosong Wang, a member of the Chinese Academy of Sciences, is a great polymer s...It is a great pleasure for international colleagues in polymer science to celebrate Professor Fosong Wang on his 80th birthday. Professor Fosong Wang, a member of the Chinese Academy of Sciences, is a great polymer scientist, with over 300 publications and a few books. He is internationally recognized in his work on stereoregular polymers and electronically active polymers,展开更多
This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused b...This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carboranefused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.展开更多
The negative ion implantation technique was applied to modify polymer surfaces of culture dishes for neuronal cells, PC12h. The silver negative ion (Ag-)-implantation was carried out at an ion energy of 20 keV and a d...The negative ion implantation technique was applied to modify polymer surfaces of culture dishes for neuronal cells, PC12h. The silver negative ion (Ag-)-implantation was carried out at an ion energy of 20 keV and a dose of 3 × 1015 ions/cm2 with non-treated polystyrene (NTPS), tissue culture polystyrene (TCPS), and collagen-coated TCPS-Iwaki (CCPS). Ag--implanted surfaces of Ag/NTPS, Ag/TCPS, and Ag/CCPS were studied with respect to contact angle and/or chemical composition. The numerical values of contact angles on Ag/NTPS and Ag/TCPS were similar within experimental error, indicating the resemblance in their hydrophobicity and hydrophilicity. The PC12h cells, however, were attached only to the Ag--implanted region of NTPS, but not to the non-implanted NTPS region. Moreover, the neurite outgrowth was also observed to extend specifically along the Ag--implanted region of NTPS but not on the non-implanted NTPS region, although neurites extended towards all directions on collagen-coated TCPS as a control surface. There was no remarkable difference in neurite outgrowth among Ag--implanted regions of TCPS and CCPS. Thus Ag/NTPS region was affirmed to promote highly selective attachment, growth, and differentiation of PC12h cells, although its mechanism is still unknown.展开更多
In an attempt to clarify issues related to the molecular weight dependence of the phase transition of poly(N-isopropylacrylamide) (PNIPAM) in water,we prepared a library of PNIPAM samples of well-controlled molecular ...In an attempt to clarify issues related to the molecular weight dependence of the phase transition of poly(N-isopropylacrylamide) (PNIPAM) in water,we prepared a library of PNIPAM samples of well-controlled molecular weight (7000 to 45000 g/mol) bearing identical groups on each chain end.The polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) with a bifunctional chain tranfer agent and further end group modification.The effects of the end group chemical structure,hydroxyethyl (HE),propargyl (Pr),chloroethyl (CE),n-butyl (nBu),n-hexyl (nHe),and isobutylsulfanylthiosulfanyl (IBS) on the phase transition temperature of aqueous PNIPAM solutions were investigated by high-sensitivity differential scanning calorimetry (HS-DSC),yielding the enthalpy ΔH and the endotherm maximum temperature (T M),and turbidimetry,providing the cloud point (T CP) of each solution.The T CP and T M of the PNIPAM sample of lowest molar mass (M n 7,000 g/mol,0.5 g/L) ranged,respectively,from 38.8 to 22.5 °C and 42.2 to 26.0 °C,depending on the structure of the end-group,whereas H showed no strong end-group dependence.The phase transition of all polymers,except,-di(n-butyl-PNIPAM),exhibited a marked dependence on the polymer molar mass.展开更多
The design of crosslinking domains is a vital factor to create functional hydrogels with controlled physical,mechanical,and adhesive properties.This paper demonstrates versatile synthetic systems of micelle-crosslinke...The design of crosslinking domains is a vital factor to create functional hydrogels with controlled physical,mechanical,and adhesive properties.This paper demonstrates versatile synthetic systems of micelle-crosslinked hydrogels with highly stretchable,self-healing,and selectively adhesive properties.For this,methacrylate-bearing random copolymer micelles are designed as physical and covalent crosslink domains via the self-assembly of amphiphilic random copolymers carrying hydrophilic poly(ethylene glycol)(PEG),hydrophobic butyl or dodecyl groups,and methacrylate-terminal PEG in water.The size,aggregation number,and pendant methacrylate number of the micelles are controlled by the composition and degree of polymerization.Hydrogels are efficiently obtained from the free radical polymerization of hydrophilic monomers such as PEG acrylate and acrylamide in the presence of the micelle crosslinkers in water.Owing to the dynamic yet selective chain exchange properties of the micelle domains,the hydrogels are highly stretchable up to over 1000%and show self-healing and selectively adhesive properties.The self-healing of hydrogels is promoted upon heating due to the fast chain exchange of the micelle domains,whereas hydrogels consisting of micelles with different alkyl groups are never adhesive because of their self-sorting properties.展开更多
Cylinder-shaped macrocycles composed ofπ-panels have attracted special attention as one of the best platforms for the development of organic molecule-based chi-roptical materials.Pillar[n]arenes are a class of macroc...Cylinder-shaped macrocycles composed ofπ-panels have attracted special attention as one of the best platforms for the development of organic molecule-based chi-roptical materials.Pillar[n]arenes are a class of macrocycles with the advantage of easy preparation but have not been extensively investigated from the perspective of luminescent molecules.However,common alkoxy pillar[n]arenes arefluorescent in non-haloalkane solvents,showing potential to be used for molecule-based chi-roptical materials.In this work,circularly polarized luminescence(CPL)spectra are reported for a pillar[5]arene with stable planar chirality using tetrahydrofu-ran(THF)and cyclohexane as solvents,which has been missing for many years.The pillar[5]arene also forms co-aggregates with 1,4-bis(phenylethynyl)benzene and 1,4-bis[(pentafluorophenyl)ethynyl]benzene in THF/H2O mixtures,owing to a hydrophobic effect.The co-aggregates with thefluorinatedπ-rod display a new low-energy absorption peak and broad emission band as well as intense circular dichroism and CPL signals.Chiral information from the enantiopure pillar[5]arene core is efficiently transmitted to the co-aggregates with theπ-conjugated rod,lead-ing to the highest dissymmetry factor for CPL(2.9×10-2 at 472 nm)among pillar[n]arene-based CPL materials.展开更多
The power conversion efficiencies of organic solar cells(OSCs)have routinely lagged far behind those of their inorganic counterparts.However,owing to the enor-mous contributions of many researchers,the power conversio...The power conversion efficiencies of organic solar cells(OSCs)have routinely lagged far behind those of their inorganic counterparts.However,owing to the enor-mous contributions of many researchers,the power conversion efficiencies of OSCs have rapidly improved and now exceed 19%.The charge generation mechanisms in OSCs have been heavily debated during this period while acquiring valuable knowl-edge.This review highlights fundamental and cutting-edge research that rationalizes why OSCs can generate photocurrent so efficiently.In particular,a photophysi-cist’s views on exciton diffusion to donor:acceptor interfaces,charge transfer at the donor:acceptor interface,and long-range spatial dissociation of charge transfer states are discussed.Although a general consensus in this area has not been reached yet,recent time-resolved spectroscopic measurements provide important photophys-ical insights that can help achieving a better understanding of the charge generation mechanism in OSCs.Based on these observations,future research directions for realizing further improvements in OSC performance are discussed.展开更多
There are numerous numbers of hypoxia-selective luminescent probes based on oxygen quenching of phosphorescence.We show a unique design for luminescent probes to detect hyperoxia utilizing hybrid networks consisting o...There are numerous numbers of hypoxia-selective luminescent probes based on oxygen quenching of phosphorescence.We show a unique design for luminescent probes to detect hyperoxia utilizing hybrid networks consisting of aggregation-induced emission(AIE)-active dyes and disulfide linkers.At the initial state,emission from the AIE-active dyes is inducible by suppressing energy-consumable intramolecular motions in the hybrid matrices,while the decrease in intensity was detected by releasing molecular motions corresponded to bond scission at the disulfide linkers.Particularly,it was shown that this process selectively proceeds in hypoxia.As a result,positive luminescent signals were obtained in hyperoxia.展开更多
We designed the triad molecule,bis-o-carborane-substituted bis(thienylethynyl)benzene,as a filler for realizing thermochromic luminescent behaviors based on conventional polymer films,such as polystyrene.From the opti...We designed the triad molecule,bis-o-carborane-substituted bis(thienylethynyl)benzene,as a filler for realizing thermochromic luminescent behaviors based on conventional polymer films,such as polystyrene.From the optical measurements,it was found that the triad can show solid-state emission and dual-luminescent properties with variable intensity ratios depending on media.From the mechanistic studies including the experiments with the methyl-substituted model compound,it was revealed that dual emission should be originated from the locally excited and twisted intramolecular charge transfer states,and the latter emission band is significantly enhanced in the solid states.We prepared amorphous films containing variable concentrations of the triad with the spin-coating method and investigated optical properties.It was found that intensity ratios were drastically changed by altering the concentration of the triad.By increasing the proportion of the triad,aggregation occurred,and emission color was apparently varied through the changes in intensity ratios of the dual emission property.Based on the aggregationinduced luminochromic property of the triad,thermochromic luminescence was finally realized by heating the amorphous films.The rational design for obtaining thermochromic luminescent amorphous films is illustrated in this paper.展开更多
文摘Two-photon ionization and recombination processes of an aromatic chromophore doped in polymer films werestudied and the features of these processes were discussed in relation to photofunctional polymers, An aromatic moleculehaving low ionization potential, e.g., N,N,N',N'-tetramethyl-p-phenylene diamine doped in poly(methyl methacrylate)(PMMA) film was easily photoionized by intense laser ligh excitation, giving a colored radical cation (photochromism) anda trapped electron in PMMA matrix. As a reversed process, the radical cation recombined with the trapped electron, showingdiscoloration and emitting luminescence, either isothermal luminescence (ITL), or thermoluminescence (TL). In this report,ITL and TL through the charge recombination process were studied and the luminescence was suggested as a mean of the read-out of photorecording.
基金supported by a Grant-in-Aid for Scientific Research on Priority Areas"Soft Matter Physics"from the Ministry of Education,Culture,Sports,Science and Technology of Japan,and partly supported by a Grant-in-Aid for Scientific Research(B) from the Japan Society for the Promotion of Science under grant number 19350057
文摘Collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and phase diagrams of aqueous PNIPAM solutions with very fiat LCST phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. Reentrant coil-globule-coil transition in mixed solvent of water and methanol is also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mole fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydophobically-modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules and higher fractal assembly, are studied by USANS with theoretical modeling of the scattering function.
文摘It is a great pleasure for international colleagues in polymer science to celebrate Professor Fosong Wang on his 80th birthday. Professor Fosong Wang, a member of the Chinese Academy of Sciences, is a great polymer scientist, with over 300 publications and a few books. He is internationally recognized in his work on stereoregular polymers and electronically active polymers,
基金supported by Konica Minolta Science and Technology Foundation (for K.T.)a Grant-in-Aid for Scientific Research on Innovative Areas "New Polymeric Materials Based on Element-Blocks (No.2401)" (JP24102013)
文摘This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carboranefused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.
基金This work was supported by the Research for the Future Program of the Japan Society for the Promotion of Science (JSPS-RFTF98I00201).
文摘The negative ion implantation technique was applied to modify polymer surfaces of culture dishes for neuronal cells, PC12h. The silver negative ion (Ag-)-implantation was carried out at an ion energy of 20 keV and a dose of 3 × 1015 ions/cm2 with non-treated polystyrene (NTPS), tissue culture polystyrene (TCPS), and collagen-coated TCPS-Iwaki (CCPS). Ag--implanted surfaces of Ag/NTPS, Ag/TCPS, and Ag/CCPS were studied with respect to contact angle and/or chemical composition. The numerical values of contact angles on Ag/NTPS and Ag/TCPS were similar within experimental error, indicating the resemblance in their hydrophobicity and hydrophilicity. The PC12h cells, however, were attached only to the Ag--implanted region of NTPS, but not to the non-implanted NTPS region. Moreover, the neurite outgrowth was also observed to extend specifically along the Ag--implanted region of NTPS but not on the non-implanted NTPS region, although neurites extended towards all directions on collagen-coated TCPS as a control surface. There was no remarkable difference in neurite outgrowth among Ag--implanted regions of TCPS and CCPS. Thus Ag/NTPS region was affirmed to promote highly selective attachment, growth, and differentiation of PC12h cells, although its mechanism is still unknown.
基金supported by a grant of the Natural Sciences and Engineering Council of Canadaby a FY2009 Japan Society for the Promotion of Science Invitation Fellowship Program for Research in Japan(Long-term)
文摘In an attempt to clarify issues related to the molecular weight dependence of the phase transition of poly(N-isopropylacrylamide) (PNIPAM) in water,we prepared a library of PNIPAM samples of well-controlled molecular weight (7000 to 45000 g/mol) bearing identical groups on each chain end.The polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) with a bifunctional chain tranfer agent and further end group modification.The effects of the end group chemical structure,hydroxyethyl (HE),propargyl (Pr),chloroethyl (CE),n-butyl (nBu),n-hexyl (nHe),and isobutylsulfanylthiosulfanyl (IBS) on the phase transition temperature of aqueous PNIPAM solutions were investigated by high-sensitivity differential scanning calorimetry (HS-DSC),yielding the enthalpy ΔH and the endotherm maximum temperature (T M),and turbidimetry,providing the cloud point (T CP) of each solution.The T CP and T M of the PNIPAM sample of lowest molar mass (M n 7,000 g/mol,0.5 g/L) ranged,respectively,from 38.8 to 22.5 °C and 42.2 to 26.0 °C,depending on the structure of the end-group,whereas H showed no strong end-group dependence.The phase transition of all polymers,except,-di(n-butyl-PNIPAM),exhibited a marked dependence on the polymer molar mass.
基金Japan Society for the Promotion of Science KAKENHI,Grant/Award Numbers:JP19K22218,JP20H02787,JP20H05219,JP22H04539The Ogasawara Foundation for the Promotion of Science&Engineering+1 种基金Noguchi InstituteIketani Science and Technology Foundation。
文摘The design of crosslinking domains is a vital factor to create functional hydrogels with controlled physical,mechanical,and adhesive properties.This paper demonstrates versatile synthetic systems of micelle-crosslinked hydrogels with highly stretchable,self-healing,and selectively adhesive properties.For this,methacrylate-bearing random copolymer micelles are designed as physical and covalent crosslink domains via the self-assembly of amphiphilic random copolymers carrying hydrophilic poly(ethylene glycol)(PEG),hydrophobic butyl or dodecyl groups,and methacrylate-terminal PEG in water.The size,aggregation number,and pendant methacrylate number of the micelles are controlled by the composition and degree of polymerization.Hydrogels are efficiently obtained from the free radical polymerization of hydrophilic monomers such as PEG acrylate and acrylamide in the presence of the micelle crosslinkers in water.Owing to the dynamic yet selective chain exchange properties of the micelle domains,the hydrogels are highly stretchable up to over 1000%and show self-healing and selectively adhesive properties.The self-healing of hydrogels is promoted upon heating due to the fast chain exchange of the micelle domains,whereas hydrogels consisting of micelles with different alkyl groups are never adhesive because of their self-sorting properties.
基金MEXT World Premier International Research Center Initiative,JapanCore Research for Evolutional Science and Technology,Grant/Award Number:JPMJCR18R3Japan Society for the Promotion of Science,Grant/Award Numbers:JP21K14611,JP22H00334,JP23H04027。
文摘Cylinder-shaped macrocycles composed ofπ-panels have attracted special attention as one of the best platforms for the development of organic molecule-based chi-roptical materials.Pillar[n]arenes are a class of macrocycles with the advantage of easy preparation but have not been extensively investigated from the perspective of luminescent molecules.However,common alkoxy pillar[n]arenes arefluorescent in non-haloalkane solvents,showing potential to be used for molecule-based chi-roptical materials.In this work,circularly polarized luminescence(CPL)spectra are reported for a pillar[5]arene with stable planar chirality using tetrahydrofu-ran(THF)and cyclohexane as solvents,which has been missing for many years.The pillar[5]arene also forms co-aggregates with 1,4-bis(phenylethynyl)benzene and 1,4-bis[(pentafluorophenyl)ethynyl]benzene in THF/H2O mixtures,owing to a hydrophobic effect.The co-aggregates with thefluorinatedπ-rod display a new low-energy absorption peak and broad emission band as well as intense circular dichroism and CPL signals.Chiral information from the enantiopure pillar[5]arene core is efficiently transmitted to the co-aggregates with theπ-conjugated rod,lead-ing to the highest dissymmetry factor for CPL(2.9×10-2 at 472 nm)among pillar[n]arene-based CPL materials.
基金partly supported by the JST PRESTO program Grant Number JPMJPR1874,JSPS KAKENHI Grant Numbers 17K14527,21H02012,21H05394,and 22K19065The Murata Science Foundation+1 种基金The Sumitomo FoundationOgasawara Toshiaki Memorial Foundation.
文摘The power conversion efficiencies of organic solar cells(OSCs)have routinely lagged far behind those of their inorganic counterparts.However,owing to the enor-mous contributions of many researchers,the power conversion efficiencies of OSCs have rapidly improved and now exceed 19%.The charge generation mechanisms in OSCs have been heavily debated during this period while acquiring valuable knowl-edge.This review highlights fundamental and cutting-edge research that rationalizes why OSCs can generate photocurrent so efficiently.In particular,a photophysi-cist’s views on exciton diffusion to donor:acceptor interfaces,charge transfer at the donor:acceptor interface,and long-range spatial dissociation of charge transfer states are discussed.Although a general consensus in this area has not been reached yet,recent time-resolved spectroscopic measurements provide important photophys-ical insights that can help achieving a better understanding of the charge generation mechanism in OSCs.Based on these observations,future research directions for realizing further improvements in OSC performance are discussed.
基金This work was supported by the Grant-in-Aid for Scientific Research(A)(No.JP17H01220)the Grant-in-Aid for Scientific Research on Innovative Areas“New Polymeric Materials Based on Element-Blocks(No.2401)”(No.JP24102013)the Grant-in-Aid for Challenging Research(Pioneering)(No.JP18H05356).
文摘There are numerous numbers of hypoxia-selective luminescent probes based on oxygen quenching of phosphorescence.We show a unique design for luminescent probes to detect hyperoxia utilizing hybrid networks consisting of aggregation-induced emission(AIE)-active dyes and disulfide linkers.At the initial state,emission from the AIE-active dyes is inducible by suppressing energy-consumable intramolecular motions in the hybrid matrices,while the decrease in intensity was detected by releasing molecular motions corresponded to bond scission at the disulfide linkers.Particularly,it was shown that this process selectively proceeds in hypoxia.As a result,positive luminescent signals were obtained in hyperoxia.
基金Nakatani FoundationMinistry of Education,Culture,Sports,Science,and Technology,Japan for Scientific Research,Grant/Award Number:JP21H02001ScientificResearch on Innovative Areas“New Polymeric Materials Based on Element-Blocks”,Grant/Award Numbers:No.2401,JP24102013。
文摘We designed the triad molecule,bis-o-carborane-substituted bis(thienylethynyl)benzene,as a filler for realizing thermochromic luminescent behaviors based on conventional polymer films,such as polystyrene.From the optical measurements,it was found that the triad can show solid-state emission and dual-luminescent properties with variable intensity ratios depending on media.From the mechanistic studies including the experiments with the methyl-substituted model compound,it was revealed that dual emission should be originated from the locally excited and twisted intramolecular charge transfer states,and the latter emission band is significantly enhanced in the solid states.We prepared amorphous films containing variable concentrations of the triad with the spin-coating method and investigated optical properties.It was found that intensity ratios were drastically changed by altering the concentration of the triad.By increasing the proportion of the triad,aggregation occurred,and emission color was apparently varied through the changes in intensity ratios of the dual emission property.Based on the aggregationinduced luminochromic property of the triad,thermochromic luminescence was finally realized by heating the amorphous films.The rational design for obtaining thermochromic luminescent amorphous films is illustrated in this paper.