We study a proposed model describing the propagation of computer virus in the network with antidote in vulnerable system. Mathematical analysis shows that dynamics of the spread of computer viruses is determined by th...We study a proposed model describing the propagation of computer virus in the network with antidote in vulnerable system. Mathematical analysis shows that dynamics of the spread of computer viruses is determined by the threshold Ro. If Ro 〈 1, the virusfree equilibrium is globally asymptotically stable, and if R0 〉 1, the endemic equilibrium is globally asymptotically stable. Lyapunov functional method as well as geometric approach are used for proving the global stability of equilibria. A numerical investigation is carried out to confirm the analytical results. Through parameter analysis, some effective strategies for eliminating viruses are suggested.展开更多
文摘We study a proposed model describing the propagation of computer virus in the network with antidote in vulnerable system. Mathematical analysis shows that dynamics of the spread of computer viruses is determined by the threshold Ro. If Ro 〈 1, the virusfree equilibrium is globally asymptotically stable, and if R0 〉 1, the endemic equilibrium is globally asymptotically stable. Lyapunov functional method as well as geometric approach are used for proving the global stability of equilibria. A numerical investigation is carried out to confirm the analytical results. Through parameter analysis, some effective strategies for eliminating viruses are suggested.