To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different cast...To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different casting parameters such as pouring temperature, inoculation, carbon equivalent, moisture content, green compression strength, permeability and mould hardness were selected. Three different melts of metal with 0.4wt.%, 0.6wt.%, and 0.8wt.% inoculation (Fe-Si-Mg alloy and post inoculant) were produced using a 1-ton capacity coreless medium frequency induction furnace. L-27 orthogonal array with 3-level settings were chosen for the analysis. Responses for each run were observed. The signal-to-noise (S/N) ratio for each run was calculated using the Taguchi approach, and the optimized levels of different casting parameters were identified based on the SIN ratio. The analysis of variance for the casting acceptance percentage concludes that inoculation is the most significant factor affecting the castings' quality with a contribution percentage of 44%; an increase in inoculation results in a significant improvement in acceptance percentage of ductile iron castings. The experiment results showed that with the optimized parameters, the rejection rate was reduced from 16.98% to 6.07%.展开更多
文摘To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different casting parameters such as pouring temperature, inoculation, carbon equivalent, moisture content, green compression strength, permeability and mould hardness were selected. Three different melts of metal with 0.4wt.%, 0.6wt.%, and 0.8wt.% inoculation (Fe-Si-Mg alloy and post inoculant) were produced using a 1-ton capacity coreless medium frequency induction furnace. L-27 orthogonal array with 3-level settings were chosen for the analysis. Responses for each run were observed. The signal-to-noise (S/N) ratio for each run was calculated using the Taguchi approach, and the optimized levels of different casting parameters were identified based on the SIN ratio. The analysis of variance for the casting acceptance percentage concludes that inoculation is the most significant factor affecting the castings' quality with a contribution percentage of 44%; an increase in inoculation results in a significant improvement in acceptance percentage of ductile iron castings. The experiment results showed that with the optimized parameters, the rejection rate was reduced from 16.98% to 6.07%.