期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interface and Surface Properties of Nano-hydroxyapatite /Poly (1,4-PhenyleneSulfide)-Poly(2,4-Phenylene Sulfide Acid) Copolymer Composite
1
作者 严永刚 LI Yubao +3 位作者 Wei Jie Zuo Yi J.G.C.Wolke J.A.Jansen 《High Technology Letters》 EI CAS 2003年第1期26-30,共5页
The interface and surface properties of nano-hydroxyapatite(n-HA) and poly(1,4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some... The interface and surface properties of nano-hydroxyapatite(n-HA) and poly(1,4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+), carboxyl (-COO-) and phosphate radicle ion (PO3-4) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the original n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength. 展开更多
关键词 纳米羟磷灰石 聚乙烯 亚苯基硫化物 亚苯基硫酸 共聚物 合成 界面性质 表面性质 生物材料
下载PDF
Multifunctional zinc ion doped sol-gel derived mesoporous bioactive glass nanoparticles for biomedical applications 被引量:6
2
作者 Zuzana Neščáková Kai Zheng +6 位作者 Liliana Liverani Qaisar Nawaz Dagmar Galusková Hana Kaňková Martin Michálek Dušan Galusek Aldo R.Boccaccini 《Bioactive Materials》 SCIE 2019年第1期312-321,共10页
Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and,more recently,in soft tissue repair and wound healing.In this study we produced mesoporous bioactive glass na... Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and,more recently,in soft tissue repair and wound healing.In this study we produced mesoporous bioactive glass nanoparticles(MBGNs)based on the SiO2-CaO system.With the intention of adding subsidiary biological function,MBGNs were doped with Zn2+ions.Zn-MBGNs with 8 mol%ZnO content were synthesized via microemulsion assisted sol-gel method.The synthesized particles were homogeneous in shape and size.They exhibited spherical shape,good dispersity,and a size of 130±10 nm.The addition of zinc precursors did not affect the morphology of particles,while their specific surface area increased in comparison to MBGNs.The presence of Zn2+ions inhibited the formation of hydroxycarbonate apatite(HCAp)on the particles after immersion in simulated body fluid(SBF).No formation of HCAp crystals on the surface of Zn-MBGNs could be observed after 14 days of immersion.Interestingly,powders containing relatively high amount of zinc released Zn2+ions in low concentration(0.6-1.2 mg L^−1)but in a sustained manner.This releasing feature enables Zn-MBGNs to avoid potentially toxic levels of Zn2+ions,indeed Zn-MBGNs were seen to improve the differentiation of osteoblast-like cells(MG-63).Additionally,Zn-MBGNs showed higher ability to adsorb proteins in comparison to MBGNs,which could indicate a favourable later attachment of cells.Due to their advantageous morphological and physiochemical properties,Zn-MBGNs show great potential as bioactive fillers or drug delivery systems in a variety of applications including bone regeneration and wound healing. 展开更多
关键词 Bioactive particles Sol-gel synthesis ZINC Bioactivity Ion release Bioactive glass
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部