In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact...In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.展开更多
This paper presents a new approach for determining the effective control signals for damping of oscillations by using fuzzy logic based Interline Power Flow Controller [IPFC]. The IPFC performance is tested with PI co...This paper presents a new approach for determining the effective control signals for damping of oscillations by using fuzzy logic based Interline Power Flow Controller [IPFC]. The IPFC performance is tested with PI controllers in comparison with fuzzy logic based controller on Modified Phllips-Heffron Model of Single Machine Infinite Bus System to achieve improved damping performance by selecting effective control signals such as deviation in pulse width modulation index of voltage series converter 1 in line 1, pulse width modulation index of voltage series converter 2 in line 2, deviation in phase angle of the injected voltage of convertor 1, injected voltage phase angle deviation of convertor 2. Investigations reveal that coordinated tuning of Interline Power Flow Controller with Fuzzy Logic Controller provides the robust dynamic performance. The Fuzzy Logic Based Interline Power Flow Controller [IPFC] is designed with simple fuzzy rules to coordinate the additional damping signal. The proposed controllers for IPFC are able to achieve improved designed performance of the power system. Validity of effective control signals has been done by eigen value analysis.展开更多
文摘In the present study nano-tungsten carbide particles were generated in a wire explosion process.The plasma generated during the wire explosion process was analyzed using optical emission spectroscopy(OES).The impact of ambient pressure on the plasma temperature,electron density and plasma lifetime was studied.Lifetime variations of the plasma produced under different experimental conditions were analyzed.The produced nanoparticles were characterized through wide angle X-ray diffraction(WAXD) and transmission electron microscopy(TEM) studies. Particles produced with a negative DC charging voltage had a larger mean size when compared to a positive charging voltage.Polarity dependence on the plasma duration was observed where plasma was sustained for a longer duration with a negative DC charging voltage.
文摘This paper presents a new approach for determining the effective control signals for damping of oscillations by using fuzzy logic based Interline Power Flow Controller [IPFC]. The IPFC performance is tested with PI controllers in comparison with fuzzy logic based controller on Modified Phllips-Heffron Model of Single Machine Infinite Bus System to achieve improved damping performance by selecting effective control signals such as deviation in pulse width modulation index of voltage series converter 1 in line 1, pulse width modulation index of voltage series converter 2 in line 2, deviation in phase angle of the injected voltage of convertor 1, injected voltage phase angle deviation of convertor 2. Investigations reveal that coordinated tuning of Interline Power Flow Controller with Fuzzy Logic Controller provides the robust dynamic performance. The Fuzzy Logic Based Interline Power Flow Controller [IPFC] is designed with simple fuzzy rules to coordinate the additional damping signal. The proposed controllers for IPFC are able to achieve improved designed performance of the power system. Validity of effective control signals has been done by eigen value analysis.