Some specific non-isotropic Jacobi approximations in multiple-dimensions are investigated, which are used for numerical solutions of differential equations on various unbounded domains. The convergence of proposed sch...Some specific non-isotropic Jacobi approximations in multiple-dimensions are investigated, which are used for numerical solutions of differential equations on various unbounded domains. The convergence of proposed schemes are proved. Some efficient algorithms are provided. Numerical results are presented to illustrate the efficiency of this new approach.展开更多
The purpose of this paper is to investigate the existence of solutions to a nonlocal Cauchy problem for an evolution equation. The methods used here include the semigroup methods in proper spaces and Schauder's th...The purpose of this paper is to investigate the existence of solutions to a nonlocal Cauchy problem for an evolution equation. The methods used here include the semigroup methods in proper spaces and Schauder's theorem. And the results are applied to a system of nonlinear partial differential equations with nonlinear boundary conditions.展开更多
文摘Some specific non-isotropic Jacobi approximations in multiple-dimensions are investigated, which are used for numerical solutions of differential equations on various unbounded domains. The convergence of proposed schemes are proved. Some efficient algorithms are provided. Numerical results are presented to illustrate the efficiency of this new approach.
文摘The purpose of this paper is to investigate the existence of solutions to a nonlocal Cauchy problem for an evolution equation. The methods used here include the semigroup methods in proper spaces and Schauder's theorem. And the results are applied to a system of nonlinear partial differential equations with nonlinear boundary conditions.