It was found that a pitch-catch signal was more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composites (damages, fiber orientation, low level porosity, ply wavi...It was found that a pitch-catch signal was more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composites (damages, fiber orientation, low level porosity, ply waviness, and cracks). Both the strength and stiffness depend on the fiber orientation and porosity volume in the composites. The porosity content of a composite structure is critical to the strength and performance of the structure in general. The depth of the sampling volume where the pitch-catch signal came from was relatively shallow with the head- to-head miniature Rayleigh probes, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Also, a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate. A free software package was utilized to process micrograph images of the test sample. The results from the image processing method were compared with existing data. Beam profile was characterized in unidirectional CFRP(carbon fiber reinforced plastics) using pitch-catch Rayleigh probes and the one-sided pitch-catch technique was utilized to produce C-scan images with the aid of the automatic scanner.展开更多
The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculati...The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.展开更多
Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not b...Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.展开更多
Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon m...Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.展开更多
he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D...he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.展开更多
Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case o...Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case of Bessel beam scattering. Referring to the scattering of a plane wave, the peak to peak intervals in backscattering form function caused by the interference of the specular wave and the Franz wave have been analyzed in geometry. The influence of the characteristic parameterβ of a Bessel beam on the peak to peak intervals has been indicated, and a predictive formula of the the first time. Meanwhile the elastic scattering peak to peak intervals has been established for of each partial wave has been separated based on the Resonance Scattering Theory. The influence of β on the pure elastic resonance has been studied further. The results show that selecting specific β can reduce the contribution of a certain partial wave. Therefore the resonance at the corresponding frequency and the nearby region in the backscattering is remarkably suppressed. The work of this paper could be helpful to the applications of Bessel beams on the acoustic detection of submerged objects.展开更多
Based on the structural FEM and the acoustic BEM, a numerical model of coupled elastic layer and viscoelastic layer and outside sound field is established and the vibro-acoustical characteristics of damped composite b...Based on the structural FEM and the acoustic BEM, a numerical model of coupled elastic layer and viscoelastic layer and outside sound field is established and the vibro-acoustical characteristics of damped composite boxlike shells are studied systematically. It can be con- cluded that the structural vibration responses and the sound radiation are reduced significantly due to the viscoelastic layer and its effects are dependent on the geometric, physical parameters of the layer and the excitation frequency. It is also shown that compared with the bare elastic shells, the influence of the fluid compressibility on the vibration responses of shells covered with a damping layer is not evident and the effects of the free surface and the rigid plane are weakened.展开更多
基金supported by Chosun University,Gwangju,Korea,during the 2007 academic year.
文摘It was found that a pitch-catch signal was more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composites (damages, fiber orientation, low level porosity, ply waviness, and cracks). Both the strength and stiffness depend on the fiber orientation and porosity volume in the composites. The porosity content of a composite structure is critical to the strength and performance of the structure in general. The depth of the sampling volume where the pitch-catch signal came from was relatively shallow with the head- to-head miniature Rayleigh probes, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Also, a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate. A free software package was utilized to process micrograph images of the test sample. The results from the image processing method were compared with existing data. Beam profile was characterized in unidirectional CFRP(carbon fiber reinforced plastics) using pitch-catch Rayleigh probes and the one-sided pitch-catch technique was utilized to produce C-scan images with the aid of the automatic scanner.
基金financial support for the PhD study from GL-Nobel Denton based in London
文摘The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics(CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation(LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.
文摘Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.
文摘Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.
基金supported by the Korea Institute of Marine Science & Technology promotion (KIMST)
文摘he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.
基金supported by the National Nature Science Foundation of China(40706019)
文摘Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case of Bessel beam scattering. Referring to the scattering of a plane wave, the peak to peak intervals in backscattering form function caused by the interference of the specular wave and the Franz wave have been analyzed in geometry. The influence of the characteristic parameterβ of a Bessel beam on the peak to peak intervals has been indicated, and a predictive formula of the the first time. Meanwhile the elastic scattering peak to peak intervals has been established for of each partial wave has been separated based on the Resonance Scattering Theory. The influence of β on the pure elastic resonance has been studied further. The results show that selecting specific β can reduce the contribution of a certain partial wave. Therefore the resonance at the corresponding frequency and the nearby region in the backscattering is remarkably suppressed. The work of this paper could be helpful to the applications of Bessel beams on the acoustic detection of submerged objects.
文摘Based on the structural FEM and the acoustic BEM, a numerical model of coupled elastic layer and viscoelastic layer and outside sound field is established and the vibro-acoustical characteristics of damped composite boxlike shells are studied systematically. It can be con- cluded that the structural vibration responses and the sound radiation are reduced significantly due to the viscoelastic layer and its effects are dependent on the geometric, physical parameters of the layer and the excitation frequency. It is also shown that compared with the bare elastic shells, the influence of the fluid compressibility on the vibration responses of shells covered with a damping layer is not evident and the effects of the free surface and the rigid plane are weakened.