Based on the linear analysis of stability, a dispersion equation is deduced which delineates the evolution of a general 3-dimensional disturbance on the free surface of an incompressible viscous liquid jet, With respe...Based on the linear analysis of stability, a dispersion equation is deduced which delineates the evolution of a general 3-dimensional disturbance on the free surface of an incompressible viscous liquid jet, With respect to the spatial growing disturbance mode, the numerical results obtained from the solution of the dispersion equation reveal that a dimensionless parameter J(e) exists. As J(e) > 1, the axisymmetric disturbance mode is most unstable; and when J(e) < 1, the asymmetric disturbances come into being, their growth rate increases with the decrease of J(e), till one of them becomes the most unstable disturbance. The breakup of a low-speed liquid jet results from the developing of axisymmetric disturbances, whose instability is produced by the surface tension; while the atomization of a high-speed Liquid jet is brought about by the evolution of nonaxisymmetric disturbance, whose instability is caused by the aerodynamic force on the interface between the jet and the ambient gas.展开更多
Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent...Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘Based on the linear analysis of stability, a dispersion equation is deduced which delineates the evolution of a general 3-dimensional disturbance on the free surface of an incompressible viscous liquid jet, With respect to the spatial growing disturbance mode, the numerical results obtained from the solution of the dispersion equation reveal that a dimensionless parameter J(e) exists. As J(e) > 1, the axisymmetric disturbance mode is most unstable; and when J(e) < 1, the asymmetric disturbances come into being, their growth rate increases with the decrease of J(e), till one of them becomes the most unstable disturbance. The breakup of a low-speed liquid jet results from the developing of axisymmetric disturbances, whose instability is produced by the surface tension; while the atomization of a high-speed Liquid jet is brought about by the evolution of nonaxisymmetric disturbance, whose instability is caused by the aerodynamic force on the interface between the jet and the ambient gas.
文摘Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.