An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those f...An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those forces drive various kinetic processes, causing dissipation at spots, along curves, surfaces and interfaces, and within volumetric regions. The actual evolution path, and therefore the final equilibrium state, is determined by the energetics and kinetics. A virtual work principle Links the free energy landscape and the kinetic processes, and assigns a viscous environment to every point on the landscape. The approach leads to a dynamical system that governs the evolution of generalized coordinates. The microstructural evolution is globally characterized by a basin map in the coordinate space; and by a diversity map and a variety map in the parameter space. The control of basin boundaries raises the issue of energetic and kinetic bifurcations. The variation of basin boundaries under different sets of controlling parameters provides an analytical way to plot the diversity maps of structural evolution.展开更多
A topology method is presented in this paper to reveal flow structure occurring inside turbomachinery,in which near wall now structure is revealed by using wall limiting streamlines and space flow feature is revealed ...A topology method is presented in this paper to reveal flow structure occurring inside turbomachinery,in which near wall now structure is revealed by using wall limiting streamlines and space flow feature is revealed by using space streamlines and cross-section streamlines. As an example, a computational three-dimensional viscous flow field inside a transonic turbine cascade is studied. Through the analysis,the form and evolution of vortex system and the whole process of separation occurring within this cascade are revealed. The application of topology method for analyze fiow structure inside turbomachinery is very important for understanding flow features and mechanism of flow loss even for improving the design of turbomachinery and increasing its efficiency.展开更多
基金The project supported by the National Science Foundation(USA)through grant MSS-9258115by the National Natural Science Foundation of China
文摘An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those forces drive various kinetic processes, causing dissipation at spots, along curves, surfaces and interfaces, and within volumetric regions. The actual evolution path, and therefore the final equilibrium state, is determined by the energetics and kinetics. A virtual work principle Links the free energy landscape and the kinetic processes, and assigns a viscous environment to every point on the landscape. The approach leads to a dynamical system that governs the evolution of generalized coordinates. The microstructural evolution is globally characterized by a basin map in the coordinate space; and by a diversity map and a variety map in the parameter space. The control of basin boundaries raises the issue of energetic and kinetic bifurcations. The variation of basin boundaries under different sets of controlling parameters provides an analytical way to plot the diversity maps of structural evolution.
文摘A topology method is presented in this paper to reveal flow structure occurring inside turbomachinery,in which near wall now structure is revealed by using wall limiting streamlines and space flow feature is revealed by using space streamlines and cross-section streamlines. As an example, a computational three-dimensional viscous flow field inside a transonic turbine cascade is studied. Through the analysis,the form and evolution of vortex system and the whole process of separation occurring within this cascade are revealed. The application of topology method for analyze fiow structure inside turbomachinery is very important for understanding flow features and mechanism of flow loss even for improving the design of turbomachinery and increasing its efficiency.