This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers s...Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers satisfying ∑j=0^∞|aj|〈∞.Define a linear process Xt=∑j=0^∞ ajεt-j,t≥1,and Sn=∑t=1^n Xt,n≥1.Assume that E|ε1|^2+δ′〈 for some δ′〉0 and μ(n)=O(n^-ρ) for some ρ〉0.This paper achieves a general law of precise asymptotics for {Sn}.展开更多
This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is pres...This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.展开更多
Given a simple graph G and a positive integer k, the induced matching k-partition problem asks whether there exists a k-partition (V 1, V 2, ..., V k) of V(G) such that for each i(1≤i≤k), G[V i] is 1-regular. This p...Given a simple graph G and a positive integer k, the induced matching k-partition problem asks whether there exists a k-partition (V 1, V 2, ..., V k) of V(G) such that for each i(1≤i≤k), G[V i] is 1-regular. This paper studies the computational complexity of this problem for graphs with small diameters. The main results are as follows: Induced matching 2-partition problem of graphs with diameter 6 and induced matching 3-partition problem of graphs with diameter 2 are NP-complete; induced matching 2-partition problem of graphs with diameter 2 is polynomially solvable.展开更多
In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for cl...In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for classical fractional integral Iα. The method given in the note is useful for more general multilinear integral operators.展开更多
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
基金National Natural Science Foundation of China(10571073).
文摘Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers satisfying ∑j=0^∞|aj|〈∞.Define a linear process Xt=∑j=0^∞ ajεt-j,t≥1,and Sn=∑t=1^n Xt,n≥1.Assume that E|ε1|^2+δ′〈 for some δ′〉0 and μ(n)=O(n^-ρ) for some ρ〉0.This paper achieves a general law of precise asymptotics for {Sn}.
基金Supported by the National Natural Science Foundation of China (10571050 10871062)Hunan Provincial Innovation Foundation For Postgraduate
文摘This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.
基金Supported by the National Natural Science Foundation of China( 1 0 371 1 1 2 ) and the Natural ScienceFoundation of Henan( 0 4 1 1 0 1 1 2 0 0 )
文摘Given a simple graph G and a positive integer k, the induced matching k-partition problem asks whether there exists a k-partition (V 1, V 2, ..., V k) of V(G) such that for each i(1≤i≤k), G[V i] is 1-regular. This paper studies the computational complexity of this problem for graphs with small diameters. The main results are as follows: Induced matching 2-partition problem of graphs with diameter 6 and induced matching 3-partition problem of graphs with diameter 2 are NP-complete; induced matching 2-partition problem of graphs with diameter 2 is polynomially solvable.
基金Supported by the National Natural Sciences Foundation of China (10771110)the Natural Science Founda- tion of Ningbo City (2006A610090)
文摘In this paper the boundedness for the multilinear fractional integral operator Iα^(m) on the product of Herz spaces and Herz-Morrey spaces are founded, which improves the Hardy- Littlewood-Sobolev inequality for classical fractional integral Iα. The method given in the note is useful for more general multilinear integral operators.