期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance-based seismic design of nonstructural building components:The next frontier of earthquake engineering 被引量:16
1
作者 Andre Filiatrault Timothy Sullivan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第S1期17-46,共30页
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ... With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components. 展开更多
关键词 nonstructural building components performance-based earthquake engineering seismic design and analysis
下载PDF
Modeling and cyclic behavior of segmental bridge column connected with shape memory alloy bars 被引量:4
2
作者 Hwasung Roh Andrei M.Reinhorn Jong Seh Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期375-389,共15页
This paper examines the quasi-static cyclic behavior, lateral strength and equivalent damping capacities of a system of post-tensioned segmental bridge columns tied with large diameter martensitic Shape Memory Alloy ... This paper examines the quasi-static cyclic behavior, lateral strength and equivalent damping capacities of a system of post-tensioned segmental bridge columns tied with large diameter martensitic Shape Memory Alloy (SMA) link-bars. Moment-curvature constitutive relationships are formulated and analysis tools are developed for the PT column, including a modified four-spring model prepared for the SMA bars. The suggested system is exemplified using a column with an aspect ratio of 7.5 and twelve 36.5 mm diameter NiTi martensitic SMA bars. A post-tensioning force of 40% to 60% of the tendon yield strength is applied in order to obtain a self re-centering system, considering the residual stress of the martensitie SMA bars. The cyclic response results show that the lateral strength remains consistently around 10% of the total vertical load and the equivalent viscous damping ratios reach 10%-12% of critical. When large diameter NiTi superelastic SMA bars are incorporated into the column system, the cyclic response varies substantially. The creep behavior of the superelastic SMA bar is accounted for since it affects the re-centering capability of the column. Two examples are presented to emphasize the modeling sensitivities for these special bars and quantify their cyclic behavior effects within the column assembly. 展开更多
关键词 segmental rocking columns shape memory alloy bars cyclic response energy dissipation DAMPING recentering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部