The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode f...The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.展开更多
Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed...Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed by a abrupt change of optical behavior, namely from transparent semiconductor state below 68 ℃ to highly reflective metallic state beyond 68 ℃.The preparation and properties of the films are described as well as the primary principle of the device for protection from high energy laser hits. An ion-beam-sputtering system is used to deposit VO 2 thin films.The technique is reactive ion beam sputtering of vanadium at temperature of 200 ℃ on Si, Ge and Si 3N 4 substrates in a well controlled atmosphere of argon with a partial pressure of O 2, followed by a post annealing at 400-550 ℃ with argon gas.The optical transmittance changes from 60% to 4% are obtained within the temperature range from 50 ℃ to 70 ℃. X-ray diffraction (XRD) shows that the films are of single-phase VO 2.展开更多
文摘The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.
文摘Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed by a abrupt change of optical behavior, namely from transparent semiconductor state below 68 ℃ to highly reflective metallic state beyond 68 ℃.The preparation and properties of the films are described as well as the primary principle of the device for protection from high energy laser hits. An ion-beam-sputtering system is used to deposit VO 2 thin films.The technique is reactive ion beam sputtering of vanadium at temperature of 200 ℃ on Si, Ge and Si 3N 4 substrates in a well controlled atmosphere of argon with a partial pressure of O 2, followed by a post annealing at 400-550 ℃ with argon gas.The optical transmittance changes from 60% to 4% are obtained within the temperature range from 50 ℃ to 70 ℃. X-ray diffraction (XRD) shows that the films are of single-phase VO 2.