Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such a...Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such as trains,the massive collection of battery stacks required to meet energy demands may pose a significant hazard.The objective of this paper is to review the risk evaluation processes for train fires and investigate the propagation of lithium ion battery fire to a neighboring steel warehouse structure at a rail repair shop through a case study.The methodology of the analyses conducted include a Monte Carlo-based dynamic modeling of fire propagation potentials,an expert-based fire impact analysis,and a finite element(FE)nonlinear fire analysis on the structural frame.The case study is presented as a demonstration of a holistic fire risk analysis for the lithium ion battery fire and results indicate that significant battery fire mitigations strategies should be considered.展开更多
基金The authors would like to acknowledge the funding received under NCDOT Project#2020-40.Additional funding also received from the UNC Charlotte College of Engineering Dean’s Office.Dean Bob Johnson’s support of this effort is greatly appreciated.
文摘Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such as trains,the massive collection of battery stacks required to meet energy demands may pose a significant hazard.The objective of this paper is to review the risk evaluation processes for train fires and investigate the propagation of lithium ion battery fire to a neighboring steel warehouse structure at a rail repair shop through a case study.The methodology of the analyses conducted include a Monte Carlo-based dynamic modeling of fire propagation potentials,an expert-based fire impact analysis,and a finite element(FE)nonlinear fire analysis on the structural frame.The case study is presented as a demonstration of a holistic fire risk analysis for the lithium ion battery fire and results indicate that significant battery fire mitigations strategies should be considered.