期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive Momentum-Backpropagation Algorithm for Flood Prediction and Management in the Internet of Things
1
作者 Jayaraj Thankappan Delphin Raj Kesari Mary +1 位作者 Dong Jin Yoon Soo-Hyun Park 《Computers, Materials & Continua》 SCIE EI 2023年第10期1053-1079,共27页
Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The... Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding. 展开更多
关键词 Internet of Things flood prediction artificial neural network adaptive momentum backpropagation OPTIMIZATION disaster management
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部