The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
Carbon capture,utilization,and storage(CCUS),as a green and low-carbon technology that can achieve large-scale reduction of direct emission and low-carbon utilization of fossil fuels,has become an indispensable techno...Carbon capture,utilization,and storage(CCUS),as a green and low-carbon technology that can achieve large-scale reduction of direct emission and low-carbon utilization of fossil fuels,has become an indispensable technological option for countries around the world to reduce greenhouse gas emissions,strengthen climate governance,and achieve climate goals.Since 2009,China Geological Survey(CGS)has organized and carried out lots of programs to prompt the development of CCUS technology in China,such as national carbon dioxide geological storage potential assessment,carbon dioxide geological storage and utilization survey,comprehensive geological survey of carbon dioxide geological storage in Junggar and other basins,which made a number of important achievements in regional potential assessment,demonstration project implementation and key technology research and development.展开更多
The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×...The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.展开更多
1.Basic overview of China’s islands The total length of China’s coastline is 32000 km,including 18000 km of mainland coastline and 14000 km of island coastline.There are more than 11000 islands in China,and the tota...1.Basic overview of China’s islands The total length of China’s coastline is 32000 km,including 18000 km of mainland coastline and 14000 km of island coastline.There are more than 11000 islands in China,and the total area of islands accounts for about 0.8%of China’s land area.展开更多
On October 26,2022,the International Union of Geological Sciences(IUGS)unveiled the First 100 IUGS Geological Heritage Sites in Spain.These sites are located in56 countries,including 34 in the Americas,28 in Europe,15...On October 26,2022,the International Union of Geological Sciences(IUGS)unveiled the First 100 IUGS Geological Heritage Sites in Spain.These sites are located in56 countries,including 34 in the Americas,28 in Europe,15 in Africa and 23 in the Asia-Pacific-Middle East region(Table 1).The seven selected sites of China are introduced as follows(black font in Table 1).展开更多
China has vast areas of deserts,gobis,and desertified lands,with a total area of 3.96×106 km2,accounting for 41.3%of the national land area.The desert area is 6.88×105 km2,the Gobi area is 6.61×105 km2,...China has vast areas of deserts,gobis,and desertified lands,with a total area of 3.96×106 km2,accounting for 41.3%of the national land area.The desert area is 6.88×105 km2,the Gobi area is 6.61×105 km2,and the desertification land area is 2.61×106 km2,respectively(National Forestry and Grassland Administration,2018).These are mainly distributed in the northwestern and northern regions west of the“Hu Huanyong Line”(Fig.1),including Taklimakan Desert,Gurban Tungut Desert,Badain Jalan Desert,Tengger Desert,Ulan Buhe Desert,Kubuqi Desert,Qaidam Basin Desert and Kumtag Desert,Mu Us Sandy Land,Hunshandak Sandy Land,Horqin Sandy Land and Hulun Buir Sandy Land.展开更多
1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the C...1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the Central Asian Orogenic Belt.It mainly consists of pre-Neoproterozoic metamorphosed volcanic and sedimentary rocks(Wang B et al.,2014).展开更多
Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of th...Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of thin section,scanning electron microscopy(SEM),cathode luminescence(CL),nuclear magnetic resonance(NMR),X-ray diffraction(XRD),N2 porosity and permeability,micro-resistivity imaging log(MIL)and three-dimensional seismic data analysis,this work discussed the reservoir characteristics of the member 8 of the Permian Xiashihezi Formation(He 8 sandstones)in the Linxing area of eastern Ordos Basin,determined the factors affecting reservoir quality,and revealed the formation mechanism of relatively high-permeability areas.The results show that the He 8 sandstones in the Linxing area are mainly composed of feldspathic litharenites,and are typical tight sandstones(with porosity<10%and permeability<1 mD accounting for 80.3%of the total samples).Rapid burial is the main reason for reservoir densification,which resulted in 61%loss of the primary porosity.In this process,quartz protected the original porosity by resisting compaction.The cementation(including carbonate,clay mineral and siliceous cementation)further densified the sandstone reservoirs,reducing the primary porosity with an average value of 28%.The calcite formed in the eodiagenesis occupied intergranular pores and affected the formation of the secondary pores by preventing the later fluid intrusion,and the Fe-calcite formed in the mesodiagenetic stage densified the sandstones further by filling the residual intergranular pores.The clay minerals show negative effects on reservoir quality,however,the chlorite coatings protected the original porosity by preventing the overgrowth of quartz.The dissolution of feldspars provides extensive intergranular pores which constitute the main pore type,and improves the reservoir quality.The tectonic movements play an important role in improving the reservoir quality.The current tectonic traces of the study area are mainly controlled by the Himalayan movement,and the high-permeability reservoirs are mainly distributed in the anticline areas.Additionally,the improvement degree(by tectonic movements)of reservoir quality is partly controlled by the original composition of the sandstones.Thus,the selection of potential tight gas well locations in the study area should be focused on the anticline areas with relatively good original reservoir quality.And the phenomena can be referenced for other fluvial tight sandstone basins worldwide.展开更多
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the or...The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.展开更多
1 Introduction During the late Mesozoic times,the SE China is characterized by extensive magmatism and mineralization.The widely distributed granitoids with different(I-,S-and A-)types have been inferred to be closely...1 Introduction During the late Mesozoic times,the SE China is characterized by extensive magmatism and mineralization.The widely distributed granitoids with different(I-,S-and A-)types have been inferred to be closely related to the large-scale polymetallic mineralization.The Nanling tungsten-tin polymetallic belt is endowed with considerable展开更多
2021 is the year with the least amount of oil and gas exploration and discoveries in the past 75 years.The world’s new proven oil and gas reserves were 6.6×10^(9) barrels of oil equivalent,compared with 19×...2021 is the year with the least amount of oil and gas exploration and discoveries in the past 75 years.The world’s new proven oil and gas reserves were 6.6×10^(9) barrels of oil equivalent,compared with 19×10^(9) barrels of oil equivalent in 2020,with a significant decline in new proven oil and gas reserves.展开更多
The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq...The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.展开更多
Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index i...Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index in an algorithm point of view. Four single indices of contamination factor (or concentration factor), ecological risk factor, enrichment factor, and index of geo-accumulation were illustrated, and the reference values for calculating single indices were distinguished into background levels and threshold pollution values. Eight integrated indices were divided into two groups. One group is suitable for the normal distribution single indices including the sum, average, weighted average, vector modulus, and Nemerow pollution indices, and the other for log-normal distribution including the product, root of product, and weighted power product pollution indices. Using background levels as reference values, five contamination classes were divided, and the terminologies are suggested for the single and integrated indices to unify the assessment results. Software of EGAPI was developed in a single document interface to calculate the four single and eight integrated indices by heavy metals to assess the quality of soil and sediment ecological geochemistry. Pollution indices by heavy metals of Cu, Pb, and Zn in soils in parks of Beijing were calculated using EGAPI software, and these five contamination classes and terminologies suggested in this study were evaluated and used. Results of integrated indices of Cu, Pb, and Zn in soils indicated that the soil qualities are unpolluted as a whole and varied from low polluted to unpolluted status from the center to the outskirts of Beijing City.展开更多
Climate change is a common problem in human society.The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060.The proposal of the goal of carbon peak...Climate change is a common problem in human society.The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060.The proposal of the goal of carbon peak and carbon neutralization has led China into the era of climate economy and set off a green change with both opportunities and challenges.On the basis of expounding the objectives and specific connotation of China’s carbon peak and carbon neutralization,this paper systematically discusses the main implementation path and the prospect of China’s carbon peak and carbon neutralization.China’s path to realizing carbon neutralization includes four directions:(1)in terms of carbon dioxide emission control:energy transformation path,energy conservation,and emission reduction path;(2)for increasing carbon sink:carbon capture,utilization,and storage path,ecological governance,and land greening path;(3)in key technology development:zero-carbon utilization,coal new energy coupling,carbon capture utilization and storage(CCUS),energy storage technology and other key technology paths required to achieve carbon peak and carbon neutralization;(4)from the angle of policy development:Formulate legal guarantees for the government to promote the carbon trading market;Formulate carbon emission standards for enterprises and increase publicity and education for individuals and society.Based on practicing the goal and path of carbon peak and carbon neutralization,China will vigorously develop low carbon and circular economy and promote green and high-quality economic development;speed up to enter the era of fossil resources and promoting energy transformation;accelerate the integrated innovation of green and low-carbon technologies and promote carbon neutrality.展开更多
In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solv...In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.展开更多
The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. ...The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. In this study, we present new zircon U-Pb dating, along with geochemical and Sr-Nd-Hf isotopic data for granites from the Tengchong–Lianghe granitoid belt(as abbreviated to Tengliang belt) and West Yingjiang batholiths from the Tengchong block. The mineralogical and geochemical features of the Tengliang granites and the West Yingjiang batholiths are ascribed to aluminous S-type granites and weak peraluminous I-type, respectively. Zircon U-Pb analyses yielded consistent ages ranging from 67.5 Ma, 68.4 Ma and 66.2 Ma from the Tengliang granitoid belt and 50.4 Ma to 60.8 Ma for three samples from the west Yingjiang batholiths. The Tengliang granites were emplaced during the Late Cretaceous(68-66 Ma) and demonstrate negative ε_(Hf)(t) values(-24 to-4) and initial ~(87)Sr/~(86)Sr ratios of 0.7101–0.7139 and significant negative ε_(Nd)(t) values from-8.91 to-13.2, indicating a Proterozoic sedimentary source or enriched components. The hornblende-bearing I-type granites from West Yingjiang are characterized by lower initial ~(87)Sr/~(86)Sr ratios of 0.7076–0.7106, compared to Tengliang granite and negative whole-rock ε_(Nd)(t) values from-4.0 to-11.9. The early Eocene west Yingjiang gneissic granites show wide ranges of ε_(Hf)(t) values from +7.4 to-8.5 and T_(2DM) of 1.30–0.65 Ga, indicating partial melting of ancient crust with contributions of depleted mantle materials. In combination with the regional background and previous studies, we propose that such a spatio-temporal distribution of the Tengchong granitoid belt might be related to the rollback or angleswitching of the Neo-Tethyan subducting slab. This study sheds new light on the evolutionary history of the Tengchong block.展开更多
The Diyanqinamu Mo deposit, a newly discovered porphyry deposit in the northern-central part of the Great Xing'an Range, Inner Mongolia, China, is characterized by widely distributed fluorite. It is important to n...The Diyanqinamu Mo deposit, a newly discovered porphyry deposit in the northern-central part of the Great Xing'an Range, Inner Mongolia, China, is characterized by widely distributed fluorite. It is important to note that almost all the fluorite that is paragenetic with molybdenite is purple. The Tb/Ca–Tb/La ratios of these purple fluorite samples show that they have a hydrothermal origin.The unidirectional solidification texture at the apex of the aplitic granite and the low F contents in the andesite suggest that most of F in fluorite was derived from granitic melts. These observations suggest that the fluorite was related to the magmatic-hydrothermal fluids. All the fluorite separates have consistent total REE contents with LREE-depleted, HREE-enriched, negative Eu anomaly,unapparent Ce anomaly and positive Y anomaly. These characteristics are significantly different than those of country granite, andesite and tuff whole-rock. The positive Y anomaly of the fluorite separates implies that the hydrothermal fluids migrated a long distance, as suggested by the fact that the fluorite-molybdenite veins were mostly hosted in andesite and tuff, far from the Mo ore-forming granites. The features of LREE-depleted and HREE-enriched fluorite are due to the REE-complex in the F-enriched fluids during migration. The stronger negative Eu anomaly of fluorite than those of country rocks suggests that the Eu anomaly of the original hydrothermal fluid was enhanced by the high temperature(generally above 200 or250 °C). The widespread magnetite in the studied deposit indicates that the magmatic-hydrothermal fluid was oxidized at early stage. On the other hand, the pyrite was also paragenetic, with the molybdenite and unapparent Ce anomaly implying that the hydrothermal fluid probably experienced oxygen fugacity decreasing during migration,which is important for Mo mineralization.展开更多
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discov...The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ^(18)O_(H2O) values calculated from the δ^(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.展开更多
On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposit...On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposits in the Jiaodong and Liaodong Areas within the North China Craton".For this project,Wulong and Baiyun- Xiaotongjiapuyi in Jiaodong,as well as the northern Zhaoping belts of Liaodong,were chosen as ore prospecting demonstration areas (Fig.1).展开更多
Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China.In this study,the cyclic dolomite rocks of Upper Cambrian Low...Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China.In this study,the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity.The Lower Qiulitag Group includes ten lithofacies,which were deposited in intermediate to shallow subtidal,restricted shallow subtidal,intertidal,and supratidal environments on a carbonate ramp system.These lithofacies are vertically stacked into repeated shallowing-upward,meter-scale cycles which are further grouped into six third-order depositional sequences(Sq1 to Sq6).There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks,including interparticle,intraparticle,and fenestral pores of primary origin,inter crystal,and vuggy pores of late diagenetic modification.The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity.In contrast,the high-energy ooidal grainstones generally have very low porosity.In this case,the microbialite-based peritidal cycles and peritidal cycle-dominated highstand(or regressive)successions have relatively high volumes of pore spaces,although highly fluctuating(or vertical inhomogeneous).Accordingly,the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity.This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.展开更多
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
文摘Carbon capture,utilization,and storage(CCUS),as a green and low-carbon technology that can achieve large-scale reduction of direct emission and low-carbon utilization of fossil fuels,has become an indispensable technological option for countries around the world to reduce greenhouse gas emissions,strengthen climate governance,and achieve climate goals.Since 2009,China Geological Survey(CGS)has organized and carried out lots of programs to prompt the development of CCUS technology in China,such as national carbon dioxide geological storage potential assessment,carbon dioxide geological storage and utilization survey,comprehensive geological survey of carbon dioxide geological storage in Junggar and other basins,which made a number of important achievements in regional potential assessment,demonstration project implementation and key technology research and development.
基金supported financially by the National Natural Science Foundation of China(No.41772069)projects of the China Geological Survey(1212011220737,121201004000150015,DD20190570).
文摘The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.
文摘1.Basic overview of China’s islands The total length of China’s coastline is 32000 km,including 18000 km of mainland coastline and 14000 km of island coastline.There are more than 11000 islands in China,and the total area of islands accounts for about 0.8%of China’s land area.
文摘On October 26,2022,the International Union of Geological Sciences(IUGS)unveiled the First 100 IUGS Geological Heritage Sites in Spain.These sites are located in56 countries,including 34 in the Americas,28 in Europe,15 in Africa and 23 in the Asia-Pacific-Middle East region(Table 1).The seven selected sites of China are introduced as follows(black font in Table 1).
文摘China has vast areas of deserts,gobis,and desertified lands,with a total area of 3.96×106 km2,accounting for 41.3%of the national land area.The desert area is 6.88×105 km2,the Gobi area is 6.61×105 km2,and the desertification land area is 2.61×106 km2,respectively(National Forestry and Grassland Administration,2018).These are mainly distributed in the northwestern and northern regions west of the“Hu Huanyong Line”(Fig.1),including Taklimakan Desert,Gurban Tungut Desert,Badain Jalan Desert,Tengger Desert,Ulan Buhe Desert,Kubuqi Desert,Qaidam Basin Desert and Kumtag Desert,Mu Us Sandy Land,Hunshandak Sandy Land,Horqin Sandy Land and Hulun Buir Sandy Land.
基金supported by the National Natural Science Foundation of China(41802093)the National Key R&D Program of China(2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources(2011BAB06B03-3)the Project of China Geology Survey(DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd23)。
文摘1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the Central Asian Orogenic Belt.It mainly consists of pre-Neoproterozoic metamorphosed volcanic and sedimentary rocks(Wang B et al.,2014).
基金financially supported by the National Science and Technology Major Project of China (grant No. 2016ZX05066001–002)the National Science Foundation for Young Scientists of China (grant No. 41702171)the Program for Excellent Talents in Beijing (grant No. 2017000020124G107)
文摘Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of thin section,scanning electron microscopy(SEM),cathode luminescence(CL),nuclear magnetic resonance(NMR),X-ray diffraction(XRD),N2 porosity and permeability,micro-resistivity imaging log(MIL)and three-dimensional seismic data analysis,this work discussed the reservoir characteristics of the member 8 of the Permian Xiashihezi Formation(He 8 sandstones)in the Linxing area of eastern Ordos Basin,determined the factors affecting reservoir quality,and revealed the formation mechanism of relatively high-permeability areas.The results show that the He 8 sandstones in the Linxing area are mainly composed of feldspathic litharenites,and are typical tight sandstones(with porosity<10%and permeability<1 mD accounting for 80.3%of the total samples).Rapid burial is the main reason for reservoir densification,which resulted in 61%loss of the primary porosity.In this process,quartz protected the original porosity by resisting compaction.The cementation(including carbonate,clay mineral and siliceous cementation)further densified the sandstone reservoirs,reducing the primary porosity with an average value of 28%.The calcite formed in the eodiagenesis occupied intergranular pores and affected the formation of the secondary pores by preventing the later fluid intrusion,and the Fe-calcite formed in the mesodiagenetic stage densified the sandstones further by filling the residual intergranular pores.The clay minerals show negative effects on reservoir quality,however,the chlorite coatings protected the original porosity by preventing the overgrowth of quartz.The dissolution of feldspars provides extensive intergranular pores which constitute the main pore type,and improves the reservoir quality.The tectonic movements play an important role in improving the reservoir quality.The current tectonic traces of the study area are mainly controlled by the Himalayan movement,and the high-permeability reservoirs are mainly distributed in the anticline areas.Additionally,the improvement degree(by tectonic movements)of reservoir quality is partly controlled by the original composition of the sandstones.Thus,the selection of potential tight gas well locations in the study area should be focused on the anticline areas with relatively good original reservoir quality.And the phenomena can be referenced for other fluvial tight sandstone basins worldwide.
基金supported financially by the National Natural Science Foundation of China(grant 41302062)the Fundamental Research Funds for the Central Universities(grant 2652015053,2011YYL125)the China Geological Survey(grant 12120113069900)
文摘The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.
基金Funding for the project is provided by the China Geological Survey(NO. 121201004000150015 and NO. 12120115037101)
文摘1 Introduction During the late Mesozoic times,the SE China is characterized by extensive magmatism and mineralization.The widely distributed granitoids with different(I-,S-and A-)types have been inferred to be closely related to the large-scale polymetallic mineralization.The Nanling tungsten-tin polymetallic belt is endowed with considerable
文摘2021 is the year with the least amount of oil and gas exploration and discoveries in the past 75 years.The world’s new proven oil and gas reserves were 6.6×10^(9) barrels of oil equivalent,compared with 19×10^(9) barrels of oil equivalent in 2020,with a significant decline in new proven oil and gas reserves.
基金jointly supported by the National Natural Science Foundation of China (41802093)the National Key Research and Development Program of China (2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources (2011BAB06B03-3)the Project of China Geological Survey (DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2021qntd23).
文摘The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.
基金the Project of China Geological Survey (No. 1212010610919)the State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200636).
文摘Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index in an algorithm point of view. Four single indices of contamination factor (or concentration factor), ecological risk factor, enrichment factor, and index of geo-accumulation were illustrated, and the reference values for calculating single indices were distinguished into background levels and threshold pollution values. Eight integrated indices were divided into two groups. One group is suitable for the normal distribution single indices including the sum, average, weighted average, vector modulus, and Nemerow pollution indices, and the other for log-normal distribution including the product, root of product, and weighted power product pollution indices. Using background levels as reference values, five contamination classes were divided, and the terminologies are suggested for the single and integrated indices to unify the assessment results. Software of EGAPI was developed in a single document interface to calculate the four single and eight integrated indices by heavy metals to assess the quality of soil and sediment ecological geochemistry. Pollution indices by heavy metals of Cu, Pb, and Zn in soils in parks of Beijing were calculated using EGAPI software, and these five contamination classes and terminologies suggested in this study were evaluated and used. Results of integrated indices of Cu, Pb, and Zn in soils indicated that the soil qualities are unpolluted as a whole and varied from low polluted to unpolluted status from the center to the outskirts of Beijing City.
基金This study was supported by the project of China Geological Survey(DD20211413,Comprehensive Evaluation of Ecological Protection and Utilization of Natural Resources).
文摘Climate change is a common problem in human society.The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060.The proposal of the goal of carbon peak and carbon neutralization has led China into the era of climate economy and set off a green change with both opportunities and challenges.On the basis of expounding the objectives and specific connotation of China’s carbon peak and carbon neutralization,this paper systematically discusses the main implementation path and the prospect of China’s carbon peak and carbon neutralization.China’s path to realizing carbon neutralization includes four directions:(1)in terms of carbon dioxide emission control:energy transformation path,energy conservation,and emission reduction path;(2)for increasing carbon sink:carbon capture,utilization,and storage path,ecological governance,and land greening path;(3)in key technology development:zero-carbon utilization,coal new energy coupling,carbon capture utilization and storage(CCUS),energy storage technology and other key technology paths required to achieve carbon peak and carbon neutralization;(4)from the angle of policy development:Formulate legal guarantees for the government to promote the carbon trading market;Formulate carbon emission standards for enterprises and increase publicity and education for individuals and society.Based on practicing the goal and path of carbon peak and carbon neutralization,China will vigorously develop low carbon and circular economy and promote green and high-quality economic development;speed up to enter the era of fossil resources and promoting energy transformation;accelerate the integrated innovation of green and low-carbon technologies and promote carbon neutrality.
基金This study was supported by the project of China Geological Survey on a systematic assessment of ecological protection and natural resources utilization(DD20211413)。
文摘In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.
基金the financial support provided by the open fund from the Key Laboratory of Deep-Earth Dynamics of the Ministry of Natural Resources, Institute of Geology, as well as Chinese Academy of Geological Sciences (Grant No. J1901-16)the State Key Laboratory for Mineral Deposits Research, Nanjing University (Grant No. 2020-LAMD-K04)+1 种基金the National Natural Science Foundation of China (Grant No. 41403029)The support provided by the China Scholarship Council (CSC) during a visit to the University of Arizona (201709110012)。
文摘The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. In this study, we present new zircon U-Pb dating, along with geochemical and Sr-Nd-Hf isotopic data for granites from the Tengchong–Lianghe granitoid belt(as abbreviated to Tengliang belt) and West Yingjiang batholiths from the Tengchong block. The mineralogical and geochemical features of the Tengliang granites and the West Yingjiang batholiths are ascribed to aluminous S-type granites and weak peraluminous I-type, respectively. Zircon U-Pb analyses yielded consistent ages ranging from 67.5 Ma, 68.4 Ma and 66.2 Ma from the Tengliang granitoid belt and 50.4 Ma to 60.8 Ma for three samples from the west Yingjiang batholiths. The Tengliang granites were emplaced during the Late Cretaceous(68-66 Ma) and demonstrate negative ε_(Hf)(t) values(-24 to-4) and initial ~(87)Sr/~(86)Sr ratios of 0.7101–0.7139 and significant negative ε_(Nd)(t) values from-8.91 to-13.2, indicating a Proterozoic sedimentary source or enriched components. The hornblende-bearing I-type granites from West Yingjiang are characterized by lower initial ~(87)Sr/~(86)Sr ratios of 0.7076–0.7106, compared to Tengliang granite and negative whole-rock ε_(Nd)(t) values from-4.0 to-11.9. The early Eocene west Yingjiang gneissic granites show wide ranges of ε_(Hf)(t) values from +7.4 to-8.5 and T_(2DM) of 1.30–0.65 Ga, indicating partial melting of ancient crust with contributions of depleted mantle materials. In combination with the regional background and previous studies, we propose that such a spatio-temporal distribution of the Tengchong granitoid belt might be related to the rollback or angleswitching of the Neo-Tethyan subducting slab. This study sheds new light on the evolutionary history of the Tengchong block.
基金financially supported by the 12th Five-Year Plan Project of the State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (SKLODGZY125-02)the National Natural Science Foundation of China (41272111)
文摘The Diyanqinamu Mo deposit, a newly discovered porphyry deposit in the northern-central part of the Great Xing'an Range, Inner Mongolia, China, is characterized by widely distributed fluorite. It is important to note that almost all the fluorite that is paragenetic with molybdenite is purple. The Tb/Ca–Tb/La ratios of these purple fluorite samples show that they have a hydrothermal origin.The unidirectional solidification texture at the apex of the aplitic granite and the low F contents in the andesite suggest that most of F in fluorite was derived from granitic melts. These observations suggest that the fluorite was related to the magmatic-hydrothermal fluids. All the fluorite separates have consistent total REE contents with LREE-depleted, HREE-enriched, negative Eu anomaly,unapparent Ce anomaly and positive Y anomaly. These characteristics are significantly different than those of country granite, andesite and tuff whole-rock. The positive Y anomaly of the fluorite separates implies that the hydrothermal fluids migrated a long distance, as suggested by the fact that the fluorite-molybdenite veins were mostly hosted in andesite and tuff, far from the Mo ore-forming granites. The features of LREE-depleted and HREE-enriched fluorite are due to the REE-complex in the F-enriched fluids during migration. The stronger negative Eu anomaly of fluorite than those of country rocks suggests that the Eu anomaly of the original hydrothermal fluid was enhanced by the high temperature(generally above 200 or250 °C). The widespread magnetite in the studied deposit indicates that the magmatic-hydrothermal fluid was oxidized at early stage. On the other hand, the pyrite was also paragenetic, with the molybdenite and unapparent Ce anomaly implying that the hydrothermal fluid probably experienced oxygen fugacity decreasing during migration,which is important for Mo mineralization.
基金supported by the Old Mine Prospecting Technology Innovation and Demonstration Projects of China Geological Survey(No.1212011220737)
文摘The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ^(18)O_(H2O) values calculated from the δ^(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.
文摘On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposits in the Jiaodong and Liaodong Areas within the North China Craton".For this project,Wulong and Baiyun- Xiaotongjiapuyi in Jiaodong,as well as the northern Zhaoping belts of Liaodong,were chosen as ore prospecting demonstration areas (Fig.1).
基金funded by geological survey projects of China Geological Survey(DD20190405,DD20190406)National Science and Technology Special Project of China(2011ZX0500803)National Basic Research Project(2012CB214802).
文摘Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China.In this study,the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity.The Lower Qiulitag Group includes ten lithofacies,which were deposited in intermediate to shallow subtidal,restricted shallow subtidal,intertidal,and supratidal environments on a carbonate ramp system.These lithofacies are vertically stacked into repeated shallowing-upward,meter-scale cycles which are further grouped into six third-order depositional sequences(Sq1 to Sq6).There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks,including interparticle,intraparticle,and fenestral pores of primary origin,inter crystal,and vuggy pores of late diagenetic modification.The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity.In contrast,the high-energy ooidal grainstones generally have very low porosity.In this case,the microbialite-based peritidal cycles and peritidal cycle-dominated highstand(or regressive)successions have relatively high volumes of pore spaces,although highly fluctuating(or vertical inhomogeneous).Accordingly,the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity.This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.