A joint international effort to improve solid propellant performance within the framework of a FP7European Project was described.Several metallized solid rocket propellants,of the broad family AP/HTPB/Metal in the rat...A joint international effort to improve solid propellant performance within the framework of a FP7European Project was described.Several metallized solid rocket propellants,of the broad family AP/HTPB/Metal in the ratio 68/14/18,were experimentally analyzed seeking to optimize the delivered specific impulse by identifying the most suitable high-energy fuel.Keeping the same nominal composition,different metallic fuels(including micrometric and nanometric Al,AlH3,and a variety of dual metal compositions)were characterized,tested,and contrasted to a conventional micrometric aluminum(30μm average grain size)certified for space flights.In order to overcome the intrinsic performance limitations of the matrix AP/HTPB,a new matrix consisting of ADN/GAP satisfying also the need for environmentally benign propellant formulation was considered as well.A comparative analysis between the two solid propellant systems in terms of ideal thermochemistry and experimental combustion properties reveals advantages and disadvantages of both.Overall,it is judged worthwhile to develop ADN/GAP propellants,with or without metallic fuels,to enhance the current status of solid rocket propulsion.Controlling morphology and mechanical properties of ADN/GAP compositions and understanding their flame structure and aggregation/agglomeration properties are the main issues still challenging industrial users.展开更多
A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the origi...A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the original problem has been transformed into linear complementarity problems(LCPs)and then solved via the Lemke algorithm for each time step.The proposed scheme,instead,uses the projection function to describe the discontinuity in the dynamics equations,and solves for each step the nonlinear equations obtained from the implicit integrator by the semismooth Newton iteration.Compared with the LCP‐based scheme,the new scheme offers a more general choice by allowing other nonlinearities in the governing equations.To assess its performances,several illustrative examples are solved.The numerical solutions demonstrate that the new scheme can not only predict satisfactory results for piecewise nonlinear systems,but also exhibits substantial efficiency advantages over the LCP‐based scheme when applied to piecewise linear systems.展开更多
基金supported by the HISP project(High performance solid propellants for In-Space Propulsion)of the European Community′s Seventh Framework Programme(FP7/2007-2013), under Grant Agreement No.262099,coordinated by FOI
文摘A joint international effort to improve solid propellant performance within the framework of a FP7European Project was described.Several metallized solid rocket propellants,of the broad family AP/HTPB/Metal in the ratio 68/14/18,were experimentally analyzed seeking to optimize the delivered specific impulse by identifying the most suitable high-energy fuel.Keeping the same nominal composition,different metallic fuels(including micrometric and nanometric Al,AlH3,and a variety of dual metal compositions)were characterized,tested,and contrasted to a conventional micrometric aluminum(30μm average grain size)certified for space flights.In order to overcome the intrinsic performance limitations of the matrix AP/HTPB,a new matrix consisting of ADN/GAP satisfying also the need for environmentally benign propellant formulation was considered as well.A comparative analysis between the two solid propellant systems in terms of ideal thermochemistry and experimental combustion properties reveals advantages and disadvantages of both.Overall,it is judged worthwhile to develop ADN/GAP propellants,with or without metallic fuels,to enhance the current status of solid rocket propulsion.Controlling morphology and mechanical properties of ADN/GAP compositions and understanding their flame structure and aggregation/agglomeration properties are the main issues still challenging industrial users.
文摘A generalized solution scheme using implicit time integrators for piecewise linear and nonlinear systems is developed.The piecewise linear characteristic has been well‐discussed in previous studies,in which the original problem has been transformed into linear complementarity problems(LCPs)and then solved via the Lemke algorithm for each time step.The proposed scheme,instead,uses the projection function to describe the discontinuity in the dynamics equations,and solves for each step the nonlinear equations obtained from the implicit integrator by the semismooth Newton iteration.Compared with the LCP‐based scheme,the new scheme offers a more general choice by allowing other nonlinearities in the governing equations.To assess its performances,several illustrative examples are solved.The numerical solutions demonstrate that the new scheme can not only predict satisfactory results for piecewise nonlinear systems,but also exhibits substantial efficiency advantages over the LCP‐based scheme when applied to piecewise linear systems.