We have proposed, thanks to a new model of the hydrogen atom [1], some explanation of the lines observed by Lyman in the spectrographic analysis of this atom. The model is based on a prequantum physics, itself founded...We have proposed, thanks to a new model of the hydrogen atom [1], some explanation of the lines observed by Lyman in the spectrographic analysis of this atom. The model is based on a prequantum physics, itself founded on classical mechanics completed by the existence of a universal cloud of tiny particles called U. This cloud induces simultaneously and similarly electromagnetic and gravitational effects. This common origin creates a narrow link between how planets are arranged in a solar system, say the Titus-Bode law, and how the electrons are arranged in an atom, say the lines of Lyman. We describe what this link is in the following text and, more generally, what is the preferred orbit of an isolated celestial body.展开更多
文摘We have proposed, thanks to a new model of the hydrogen atom [1], some explanation of the lines observed by Lyman in the spectrographic analysis of this atom. The model is based on a prequantum physics, itself founded on classical mechanics completed by the existence of a universal cloud of tiny particles called U. This cloud induces simultaneously and similarly electromagnetic and gravitational effects. This common origin creates a narrow link between how planets are arranged in a solar system, say the Titus-Bode law, and how the electrons are arranged in an atom, say the lines of Lyman. We describe what this link is in the following text and, more generally, what is the preferred orbit of an isolated celestial body.