期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
源码处理场景下人工智能系统鲁棒性验证方法 被引量:1
1
作者 杨焱景 毛润丰 +2 位作者 谭睿 沈海峰 荣国平 《软件学报》 EI CSCD 北大核心 2023年第9期4018-4036,共19页
人工智能(artificial intelligence, AI)技术的发展为源码处理场景下AI系统提供了强有力的支撑.相较于自然语言处理,源码在语义空间上具有特殊性,源码处理相关的机器学习任务通常采用抽象语法树、数据依赖图、控制流图等方式获取代码的... 人工智能(artificial intelligence, AI)技术的发展为源码处理场景下AI系统提供了强有力的支撑.相较于自然语言处理,源码在语义空间上具有特殊性,源码处理相关的机器学习任务通常采用抽象语法树、数据依赖图、控制流图等方式获取代码的结构化信息并进行特征抽取.现有研究通过对源码结构的深入分析以及对分类器的灵活应用已经能够在实验场景下获得优秀的结果.然而,对于源码结构更为复杂的真实应用场景,多数源码处理相关的AI系统出现性能滑坡,难以在工业界落地,这引发了从业者对于AI系统鲁棒性的思考.由于基于AI技术开发的系统普遍是数据驱动的黑盒系统,直接衡量该类软件系统的鲁棒性存在困难.随着对抗攻击技术的兴起,在自然语言处理领域已有学者针对不同任务设计对抗攻击来验证模型的鲁棒性并进行大规模的实证研究.为了解决源码处理场景下AI系统在复杂代码场景下的不稳定性问题,提出一种鲁棒性验证方法 (robustness verification by Metropolis-Hastings attack method, RVMHM),首先使用基于抽象语法树的代码预处理工具提取模型的变量池,然后利用MHM源码攻击算法替换变量扰动模型的预测效果.通过干扰数据和模型交互过程,观察攻击前后的鲁棒性验证指标的变化量来衡量AI系统的鲁棒性.以漏洞预测作为基于源码处理的二分类典型场景为例,通过在3个开源项目的数据集上验证12组AI漏洞预测模型鲁棒性说明RVMHM方法针对源码处理场景下AI系统进行鲁棒性验证的有效性. 展开更多
关键词 源码结构化分析 源码对抗攻击 AI系统鲁棒性验证
下载PDF
DevSecOps:DevOps下实现持续安全的实践探索 被引量:6
2
作者 戴启铭 毛润丰 +3 位作者 黄璜 荣国平 沈海峰 邵栋 《软件学报》 EI CSCD 北大核心 2021年第10期3014-3035,共22页
国内外各大软件企业正广泛实施DevOps相关实践,以提高产品交付和部署频率.与此同时,面对日益严峻的网络安全环境,软件系统中的安全问题日益凸显.耗时的安全实践因为快速交付,在软件开发活动中难以得到有效贯彻.也正因如此,在开发和运维... 国内外各大软件企业正广泛实施DevOps相关实践,以提高产品交付和部署频率.与此同时,面对日益严峻的网络安全环境,软件系统中的安全问题日益凸显.耗时的安全实践因为快速交付,在软件开发活动中难以得到有效贯彻.也正因如此,在开发和运维流程中有效集成安全控制手段,实现整个软件生命周期的持续安全,已成为各大企业向DevOps转型过程中亟需思考的问题.DevSecOps作为在DevOps下持续解决安全问题的有效方案,因此而受到学术界和工业界的广泛关注,并逐渐成为软件工程领域的研究重点.近年来,随着DevSecOps的研究和实践发展,人们对DevSecOps有了更全面的认识,也引入了更多安全实践.为此,从DevSecOps的背景、特征、实践、裨益和挑战这5个方面进行了归纳和总结,首次向国内软件工程社区全面介绍DevSecOps的核心内容,重点阐述了DevSecOps最新的理论研究和工业界实践现状,进而为从业者实际落地DevSecOps提供参考,也为研究者探索DevSecOps提供便利,并呼吁更多的研究者参与到DevSecOps的研究中来. 展开更多
关键词 DevOps安全 DevSecOps 持续安全 DevSecOps实践
下载PDF
CurveNet:Curvature-Based Multitask Learning Deep Networks for 3D Object Recognition 被引量:2
3
作者 A.A.M.Muzahid Wanggen Wan +2 位作者 Ferdous Sohel Lianyao Wu Li Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1177-1187,共11页
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ... In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task. 展开更多
关键词 3D shape analysis convolutional neural network DNNs object classification volumetric CNN
下载PDF
Deep learning based classification of sheep behaviour from accelerometer data with imbalance 被引量:2
4
作者 Kirk E.Turner Andrew Thompson +2 位作者 Ian Harris Mark Ferguson Ferdous Sohel 《Information Processing in Agriculture》 EI CSCD 2023年第3期377-390,共14页
Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management.Sheep behaviour is inherently imbalanced(e.g.,more ruminating than walking)resulting in u... Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management.Sheep behaviour is inherently imbalanced(e.g.,more ruminating than walking)resulting in underperforming classification for the minority activities which hold importance.Existing works have not addressed class imbalance and use traditional machine learning techniques,e.g.,Random Forest(RF).We investigated Deep Learning(DL)models,namely,Long Short Term Memory(LSTM)and Bidirectional LSTM(BLSTM),appropriate for sequential data,from imbalanced data.Two data sets were collected in normal grazing conditions using jaw-mounted and earmounted sensors.Novel to this study,alongside typical single classes,e.g.,walking,depending on the behaviours,data samples were labelled with compound classes,e.g.,walking_-grazing.The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models.We designed several multi-class classification studies with imbalance being addressed using synthetic data.DL models achieved superior performance to traditional ML models,especially with augmented data(e.g.,4-Class+Steps:LSTM 88.0%,RF 82.5%).DL methods showed superior generalisability on unseen sheep(i.e.,F1-score:BLSTM 0.84,LSTM 0.83,RF 0.65).LSTM,BLSTM and RF achieved sub-millisecond average inference time,making them suitable for real-time applications.The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions.The results also demonstrate the DL techniques can generalise across different sheep.The study presents a strong foundation of the development of such models for real-time animal monitoring. 展开更多
关键词 Sheep behaviour classification Data synthesis Class imbalance Grazing sheep
原文传递
A survey of image-based computational learning techniques for frost detection in plants
5
作者 Sayma Shammi Ferdous Sohel +2 位作者 Dean Diepeveen Sebastian Zander Michael G.K.Jones 《Information Processing in Agriculture》 EI CSCD 2023年第2期164-191,共28页
Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence,yields.Early detection of frost can help farmers mitigating its impact.In the past,frost detection was a m... Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence,yields.Early detection of frost can help farmers mitigating its impact.In the past,frost detection was a manual or visual process.Image-based techniques are increasingly being used to understand frost development in plants and automatic assessment of damage resulting from frost.This research presents a comprehensive survey of the state-of the-art methods applied to detect and analyse frost stress in plants.We identify three broad computational learning approaches i.e.,statistical,traditional machine learning and deep learning,applied to images to detect and analyse frost in plants.We propose a novel taxonomy to classify the existing studies based on several attributes.This taxonomy has been developed to classify the major characteristics of a significant body of published research.In this survey,we profile 80 relevant papers based on the proposed taxonomy.We thoroughly analyse and discuss the techniques used in the various approaches,i.e.,data acquisition,data preparation,feature extraction,computational learning,and evaluation.We summarise the current challenges and discuss the opportunities for future research and development in this area including in-field advanced artificial intelligence systems for real-time frost monitoring. 展开更多
关键词 FROST Cold stress Machine learning Image analysis CROP Plant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部