In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ...In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.展开更多
Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management.Sheep behaviour is inherently imbalanced(e.g.,more ruminating than walking)resulting in u...Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management.Sheep behaviour is inherently imbalanced(e.g.,more ruminating than walking)resulting in underperforming classification for the minority activities which hold importance.Existing works have not addressed class imbalance and use traditional machine learning techniques,e.g.,Random Forest(RF).We investigated Deep Learning(DL)models,namely,Long Short Term Memory(LSTM)and Bidirectional LSTM(BLSTM),appropriate for sequential data,from imbalanced data.Two data sets were collected in normal grazing conditions using jaw-mounted and earmounted sensors.Novel to this study,alongside typical single classes,e.g.,walking,depending on the behaviours,data samples were labelled with compound classes,e.g.,walking_-grazing.The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models.We designed several multi-class classification studies with imbalance being addressed using synthetic data.DL models achieved superior performance to traditional ML models,especially with augmented data(e.g.,4-Class+Steps:LSTM 88.0%,RF 82.5%).DL methods showed superior generalisability on unseen sheep(i.e.,F1-score:BLSTM 0.84,LSTM 0.83,RF 0.65).LSTM,BLSTM and RF achieved sub-millisecond average inference time,making them suitable for real-time applications.The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions.The results also demonstrate the DL techniques can generalise across different sheep.The study presents a strong foundation of the development of such models for real-time animal monitoring.展开更多
Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence,yields.Early detection of frost can help farmers mitigating its impact.In the past,frost detection was a m...Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence,yields.Early detection of frost can help farmers mitigating its impact.In the past,frost detection was a manual or visual process.Image-based techniques are increasingly being used to understand frost development in plants and automatic assessment of damage resulting from frost.This research presents a comprehensive survey of the state-of the-art methods applied to detect and analyse frost stress in plants.We identify three broad computational learning approaches i.e.,statistical,traditional machine learning and deep learning,applied to images to detect and analyse frost in plants.We propose a novel taxonomy to classify the existing studies based on several attributes.This taxonomy has been developed to classify the major characteristics of a significant body of published research.In this survey,we profile 80 relevant papers based on the proposed taxonomy.We thoroughly analyse and discuss the techniques used in the various approaches,i.e.,data acquisition,data preparation,feature extraction,computational learning,and evaluation.We summarise the current challenges and discuss the opportunities for future research and development in this area including in-field advanced artificial intelligence systems for real-time frost monitoring.展开更多
基金This paper was partially supported by a project of the Shanghai Science and Technology Committee(18510760300)Anhui Natural Science Foundation(1908085MF178)Anhui Excellent Young Talents Support Program Project(gxyqZD2019069).
文摘In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.
文摘Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management.Sheep behaviour is inherently imbalanced(e.g.,more ruminating than walking)resulting in underperforming classification for the minority activities which hold importance.Existing works have not addressed class imbalance and use traditional machine learning techniques,e.g.,Random Forest(RF).We investigated Deep Learning(DL)models,namely,Long Short Term Memory(LSTM)and Bidirectional LSTM(BLSTM),appropriate for sequential data,from imbalanced data.Two data sets were collected in normal grazing conditions using jaw-mounted and earmounted sensors.Novel to this study,alongside typical single classes,e.g.,walking,depending on the behaviours,data samples were labelled with compound classes,e.g.,walking_-grazing.The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models.We designed several multi-class classification studies with imbalance being addressed using synthetic data.DL models achieved superior performance to traditional ML models,especially with augmented data(e.g.,4-Class+Steps:LSTM 88.0%,RF 82.5%).DL methods showed superior generalisability on unseen sheep(i.e.,F1-score:BLSTM 0.84,LSTM 0.83,RF 0.65).LSTM,BLSTM and RF achieved sub-millisecond average inference time,making them suitable for real-time applications.The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions.The results also demonstrate the DL techniques can generalise across different sheep.The study presents a strong foundation of the development of such models for real-time animal monitoring.
基金This work was supported by a Murdoch University Digital Agriculture Connectivity PhD scholarship to Sayma Shammi.
文摘Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence,yields.Early detection of frost can help farmers mitigating its impact.In the past,frost detection was a manual or visual process.Image-based techniques are increasingly being used to understand frost development in plants and automatic assessment of damage resulting from frost.This research presents a comprehensive survey of the state-of the-art methods applied to detect and analyse frost stress in plants.We identify three broad computational learning approaches i.e.,statistical,traditional machine learning and deep learning,applied to images to detect and analyse frost in plants.We propose a novel taxonomy to classify the existing studies based on several attributes.This taxonomy has been developed to classify the major characteristics of a significant body of published research.In this survey,we profile 80 relevant papers based on the proposed taxonomy.We thoroughly analyse and discuss the techniques used in the various approaches,i.e.,data acquisition,data preparation,feature extraction,computational learning,and evaluation.We summarise the current challenges and discuss the opportunities for future research and development in this area including in-field advanced artificial intelligence systems for real-time frost monitoring.