Creep behavior of the Zr-1.5Nb-0.4Sn-0.1Fe-0.1Cu alloy sheet is investigated from 300℃ to 400℃ in the stress range from 50 MPa to 180 MPa along the rolling direction. The measured strain rates range from 8.8 × ...Creep behavior of the Zr-1.5Nb-0.4Sn-0.1Fe-0.1Cu alloy sheet is investigated from 300℃ to 400℃ in the stress range from 50 MPa to 180 MPa along the rolling direction. The measured strain rates range from 8.8 × 10^-10 s^-1 to 4.7 × 10^-7 s^-1. The activation energies are estimated to assess the creep deformation mechanisms in this alloy. The strain rate is slightly different at low stress, while it shows a distinct difference at high stresses. Stress exponents of this alloy increase with increasing applied stress at all testing temperatures. It is concluded that the creep deformation of the Zr-1.5Nb-0.4Sn-0.1Fe-0. 1 Cu alloy is controlled by the diffusion creep at low stress region and by the climbing of dislocations at high stress region.展开更多
基金supported by Korea Science & Engineering Foundation and the Ministry of Science & Technology,Korean government,through its national nuclear technology program.
文摘Creep behavior of the Zr-1.5Nb-0.4Sn-0.1Fe-0.1Cu alloy sheet is investigated from 300℃ to 400℃ in the stress range from 50 MPa to 180 MPa along the rolling direction. The measured strain rates range from 8.8 × 10^-10 s^-1 to 4.7 × 10^-7 s^-1. The activation energies are estimated to assess the creep deformation mechanisms in this alloy. The strain rate is slightly different at low stress, while it shows a distinct difference at high stresses. Stress exponents of this alloy increase with increasing applied stress at all testing temperatures. It is concluded that the creep deformation of the Zr-1.5Nb-0.4Sn-0.1Fe-0. 1 Cu alloy is controlled by the diffusion creep at low stress region and by the climbing of dislocations at high stress region.