A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previ...A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previously developed MEAM potentials of Co,Al and W.The potential parameters were determined by fitting the experimental data on the enthalpy of formation,lattice parameter,melting point and elastic constants.The present potentials generally reproduce the fundamental physical properties of the Co-W and Al-W systems accurately.The lattice parameters,the enthalpy of formation,the thermal stability and the elastic constants match well with experiment and the first-principles results.The enthalpy of mixing and the enthalpy of formation and mixing of liquid are in good agreement with CALPHAD calculations.The potentials can be easily combined with already-developed MEAM potentials for binary cobalt systems and can be used to describe Co-Al-W-based multicomponent alloys,especially for interfacial properties.展开更多
Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmo- spheric carbon dioxide by photosynthesis. Genetic manip- ulation has increased the variety of chemicals that cyanobact...Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmo- spheric carbon dioxide by photosynthesis. Genetic manip- ulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPH- dependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.展开更多
基金Project(51274167)supported by the National Natural Science Foundation of ChinaProject(LQ14E010002)supported by the Zhejiang Provincial Natural Science Foundation of ChinaProject(2E24692)supported by the KIST Institutional Programs,Korea
文摘A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previously developed MEAM potentials of Co,Al and W.The potential parameters were determined by fitting the experimental data on the enthalpy of formation,lattice parameter,melting point and elastic constants.The present potentials generally reproduce the fundamental physical properties of the Co-W and Al-W systems accurately.The lattice parameters,the enthalpy of formation,the thermal stability and the elastic constants match well with experiment and the first-principles results.The enthalpy of mixing and the enthalpy of formation and mixing of liquid are in good agreement with CALPHAD calculations.The potentials can be easily combined with already-developed MEAM potentials for binary cobalt systems and can be used to describe Co-Al-W-based multicomponent alloys,especially for interfacial properties.
文摘Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmo- spheric carbon dioxide by photosynthesis. Genetic manip- ulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPH- dependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.
基金supported by the National Natural Science Foundation of China(42074104,11774015,and U1930401)Youth Interdisciplinary Team of Chinese Academy of Sciences(JCTD2022-16)+3 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences(2020394)Guizhou Provincial 2020 Science and Technology Subsidies(GZ2020SIG)the support from the National Research Foundation of Korea(NRF-2020R1A2C1005236)supported by the National Science Foundation-Earth Sciences(EAR-1634415)。